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THE BEHAVIOUR OF TWO-VALUED RESPONSE REGULATORS
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This paper describes an approximate method of computing the ‘average’ behaviour of two-valued
response regulators when applied to several types of adiabatic calorimeter. The method is based
upon the concept of ‘uniform operation’ and uses an approximate description of the thermal
conduction process which determines the operation of the regulator. The physical basis of this
approximation is discussed in some detail and it is shown that the same formal description of the
conduction process is obtained in two different physical situations, although the probable accuracy
of the approximation is different in the two cases. In the case where the probable error is greater,
the results when the approximation is applied to a linear response thermostat regulator are compared
with those obtained by an exact treatment.

In the adiabatic calorimeters discussed, the heat change which would be observed under
ideally adiabatic conditions may be computed as the sum of the heat change actually observed
and a correction term which, in general, has to be calculated for each experiment. The approxi-
mate analysis indicates that with one special type of two-valued response regulator this correction
term is proportional to the heat change actually observed, the constant of proportionality de-
pending only on measurable physical characteristics of the apparatus. The correction term is,
however, subject to an uncertainty, the estimation of which is discussed in appendix I. With the
other two-valued response regulators discussed, the correction term can only be evaluated in terms
of the detailed behaviour of the regulator during the experiment. It is shown that in these cases
it is sufficient to know, in addition to the relevant physical characteristics of the apparatus, the way
in which the ratio of positive and negative half-cycle periods of the regulator varies with time
during the experiment. The half-cycle periods can usually be observed directly; but a numerical
integration has to be carried out for each experiment.

The analysis is extended to take account of time delay in the regulator servomechanism, and the
effects of time delay are discussed in terms of numerical examples. A similar discussion is developed
also for the use of an auxiliary signal to improve the performance of regulators of this type. It is
shown that while this device always reduces the amplitude of the temperature oscillation, the mean
temperature may be less accurately controlled than in the absence of the device.
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408 A. J. B. CRUICKSHANK ON

The predictions of the approximate analysis concerning the behaviour of two-valued response
regulators are compared with experimental results obtained from an externally compensated
adiabatic calorimeter and from various thermostats. The agreement appears to be satisfactory.

The numerical evaluation of performance data for a simple two-valued response regulator is
discussed in detail in appendix IT, which includes tabulated solutions to the equations describing
the behaviour of the regulator. When the values of the relevant physical characteristics of a
particular apparatus are known, together with the variation of the ratio of positive and negative
half-cycle periods in a particular experiment, these tables may be used to compute the correction
term to the observed heat change. The tables may also be used to calculate the difference between
the mean temperature in a thermostat and the datum temperature for which the regulator is set
in terms of the ratio of positive and negative half-cycle periods.

1. INTRODUCTION

A regulator may be defined as a device for maintaining constant over a period of time some
physical property of an experimental system. It contains three essential elements: a signal
source which is excited by departures of the experimental system from some datum con-
figuration; an amplifier which interprets the signal; and a servomechanism, actuated by
the amplifier, which affects the experimental system in such a way that the signal tends to
zZero.

Two main classes of regulators may be distinguished according to the form of the relation
between the output of the amplifier and the signal. These are discrete-valued response
regulators, in which only a small number of fixed values, usually two, is open to the amplifier
output and continuous response regulators, in which the amplifier output, and hence the
controlling action, is a continuous function of the signal. Thus a thermostat regulator
working on the ‘on-off” principle is a two-valued response regulator; a more elaborate
thermostat regulator in which the net power disposed by the heaters is directly proportional
to the signal, i.e. to the departure of the bath temperature from its datum value, is a linear
response regulator.

It is in principle possible to use automatic control in three distinct methods of adiabatic
calorimetry. In the externally compensated adiabatic calorimeter the calorimeter vessel
is surrounded by an insulating space, usually evacuated, as shown in figure 1. Heat losses
from the calorimeter vessel are minimized by altering the temperature at the outer boun-
dary of the insulating space to follow that of the calorimeter vessel itself. In the facsimile
compensated adiabatic calorimeter two similar vessels, the test calorimeter vessel and the
facsimile calorimeter vessel, are situated within a common insulating space, as shown in
figure 2. Measured amounts of energy are added to or abstracted from the facsimile
calorimeter vessel in such a way that its surface temperature is always close to that of the
test calorimeter vessel. The heat change in the test calorimeter vessel is then nearly equal
to the total heat added to or abstracted from the facsimile calorimeter vessel irrespective
of heat losses, since these are similar from both vessels. The physical arrangement of the
internally compensated adiabatic calorimeter is similar to that of the externally com-
pensated calorimeter, but in the former the temperature at the outer boundary of the
insulating space is kept constant. The temperature at the surface of the calorimeter vessel
also is kept nearly constant, by adding or abstracting measured amounts of heat from the
calorimeter vessel. In each of these methods two surfaces separated by an insulating space,
usually evacuated, are kept close to thermal equilibrium by controlling the temperature of
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ADIABATIC CALORIMETER REGULATORS 409

one of the surfaces. These two surfaces may be distinguished as the datum surface and the
controlled surface. In the externally compensated calorimeter the outer surface of the calori-
meter vessel is the datum and the inner surface of the jacket vessel is controlled, while in the
internally compensated calorimeter the reverse is the case; in the facsimile compensated
calorimeter the surface of the test calorimeter vessel is the datum and the surface of the
facsimile calorimeter vessel is controlled.

) ""”Hl

'Y

e

|

Ficure 1. Schematic section of an externally Ficure 2. Schematic section of a fascimile
compensated adiabatic calorimeter. 1, cal- compensated adiabatic calorimeter. 1, test
orimeter vessel; 2, jacket vessel; 3, insulating calorimeter vessel ; 2, facsimile calorimeter ves-
space; =====, datum surface; ===:=:= con- sel; 3, jacket vessel; 4, insulating space ; ===== ,
trolled surface. datum surface; =======, controlled surface.

Temperature differences between the datum and controlled surfaces during an experi-
ment cause ‘uncompensated’ heat transfer between the calorimeter vessel and the jacket
vessel, and this necessitates the addition of a correction term to the observed heat change in
the calorimeter vessel. In a well designed calorimeter the whole extent of each of the datum
and controlled surfaces may be assumed to be at uniform temperature (this is discussed
on p. 410). Then the correction term to be added to the observed heat change may be com-
puted as follows. Consider, for example, the case of the externally compensated adiabatic
calorimeter (see figure 1). Let the temperatures of the datum and controlled surfaces be
denoted by 7} and 7, respectively. Now the instantaneous rate of transfer of thermal energy
between the calorimeter vessel and the jacket vessel depends only on the instantaneous
values of 7} and 7. (In the facsimile compensated calorimeter it is of course the difference
between the thermal transactions of the calorimeter vessel and the facsimile vessel with
their common environment which depends only on 77 and 7,.) Both conduction and
radiation processes will contribute to the transfer of energy across the insulating space.

Consequently the contribution to the time rate of change of the datum temperature 7;
50-2
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resulting from the thermal transactions with the insulating jacket (or the uncompensated
part of this contribution in the case of facsimile compensation) will be given approximately

b .
Y (AT d8) a0 = 11(To—T3) +72( T4~ T),

where ¥, is the conduction coeflicient and y, is the radiation coefficient, in that experiment.
The coeflicients y, and y, are equal respectively to the conduction and radiation transfer
coeflicients each divided by the total heat capacity of the calorimeter vessel and its contents.
Provided that (7;,—T;) is small in comparison with 7] we may then write

(AT /dt)jackee = (1 +72 1) (T =Th)-

The coeflicient (y,+7,7}) defined in this way depends not only on the geometry of the
insulating space and the absolute temperature 7}, but also varies inversely with the total
heat capacity of the calorimeter vessel. Whenever 7] changes, the effect of any accompanying
departure from thermal equilibrium between the datum and controlled surfaces will
reduce the final value of 7] by an amount close to

i
0T =—[ (41T (1-T) &,
0

where #, represents some time before 7; commences to change and 7, is any time after the
completion of the change. Ifthe change in 7] is relatively small then §7" will be adequately

approximated by b
0T = —(n-+nT3) [ (G-T)d, (1)

where T, is the mean value of 7} between ¢, and ¢. Then the change AT in 7} which would
be observed in an externally compensated calorimeter under ideally adiabatic conditions
is related to the observed change AT in 7] by

AT = AT-+3T = AT—(y, 3 T3) [ (T,—Th) dt.
to

Exactly analogous relations expressed in terms of thermal energy instead of temperature
may be deduced for the internally compensated and facsimile compensated adiabatic
calorimeters. Thus in all three cases, in order to evaluate the correction term to the observed
heat change it is necessary only to be able to evaluate the time integral of the difference
between the temperatures of the controlled and datum surfaces. Moreover, since equation
(1-1) refers to the whole outer surface of the calorimeter vessel, it follows that the equation
remains sufficiently accurate for practical purposes even when there are transient small
temperature variations over the surface of the calorimeter vessel, provided that 7] is taken
as the mean surface temperature of the calorimeter vessel, as measured, for example, by a
multi-junction thermocouple of suitable geometry.

When a regulator is applied to an adiabatic calorimeter it is obviously desirable that the
signal source should measure the difference between the controlled and datum tempera-
tures. Itis then convenient to express the signal in terms of temperature, as

S=T,—T,.

The problem is then simply to evaluate the time integral of the signal over the complete
experiment.
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ADIABATIC CALORIMETER REGULATORS 411

The temperature in any element of volume can be altered only by the transport of
entropy into or out of the element, or by the creation of entropy within the element. While
itisin principle possible to heat the surface of an electrical conductor directly and uniformly,
it is extremely difficult to apply this principle either to the outer surface of a calorimeter
vessel or to the inner surface of a jacket vessel; and it is not generally possible to cool any
surface uniformly and directly except by radiation or convection, neither of which are
applicable within the calorimeter insulating space. Consequently in adiabatic calorimetry
we have to assume that alteration of the temperature of the controlled surface will be
effected indirectly, by thermal conduction processes. Thus the investigation of the behaviour
of automatic regulators applied to adiabatic calorimeters involves at the outset the problem
of how to incorporate an adequate description of thermal conduction processes into the
equations describing the operation of the regulator.

The form of the thermal conduction processes to be considered is determined by the
geometry of the calorimeter. Thus it is obvious that in the three methods of adiabatic
calorimetry discussed above the surface at which the controlling action takes place—the
controlling surface—must lie to that side of the controlled surface away from the insulating
space. In practice the controlling action takes place adjacent to either the inner or outer
surface of a cylindrical vessel, the controlling action being determined by the variation of
the temperature at the other, controlled, surface relative to that of the datum surface, which
is separated from the controlled surface by the insulating space, as shown in figure 1. If the
wall thickness of this cylindrical vessel is small in comparison with its length and diameter,
the conduction processes across the wall may be treated as a case of linear conduction across
a parallel-sided slab of finite thickness but infinite extent.

Consider an element of such a slab, the element having unit surface area. Itis character-
istic of such an element that temperature, heat flux, etc., are uniform over any geometric
surface drawn parallel to the outer surfaces of the slab. Consequently any point within the
element is adequately characterized by its distance x from the outer surface adjacent to
which the controlling action takes place. The controlling surface is then defined as x = 0
and the controlled surface by x = [, where [ is the thickness of the slab in centimetres. The
general conduction equation then has the form

AT T

it =P (1-2)

where T is the temperature at x, ¢ represents time and D is the diffusivity of the material,
given by A/pc, thesthermal conductivity divided by the density times the specific heat.
Equation (1-2) is subject to two boundary conditions, one for each surface. Since in practice
the rate of heat transport to or from the controlled surface due to radiation across the
insulating space is very much smaller than the rate of heat transport due to conduction
across the slab, we may, for simplicity, assume the controlled surface to be completely
insulated. The boundary condition for this surface is then

(0T 0x),, = O. (1-3)

The situation at the controlling surface, ¥ = 0, depends on whether the total heat
capacity of the servomechanism is large or small in comparison with that of the region
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412 A. J. B. CRUICKSHANK ON

between the controlling and controlled surfaces. In fact many designs of adiabatic calori-
meter may be assigned to one or other of two classes which may be discussed in terms of
the two limiting cases as the effective heat capacity of the servomechanism is either decreased
or increased.

The first case, in which the heat capacity of the servomechanism may be assumed to be
much smaller than that of the region between the controlling and controlled surfaces, is
exemplified by the externally compensated adiabatic calorimeter shown in figure 3. The
regulator operates upon the inner of the two concentric jackets, the servomechanism con-
sisting of heaters and refrigerating coils wound onto the outer surface of the inner jacket.

7
7
3
=i——:- S h—T:.- N ﬁ-
AN [ X
U ‘ 2 3
N — ;
|
gl I ! 1 I g
i | ; §
N 1 %
n 1 ; q
i , I )
! | | I
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Ficure 3. Section of an externally compensated adiabatic calorimeter with low heat capacity servo-
mechanism. 1, calorimeter vessel; 2, inner jacket vessel; 3, outer jacket vessel; 4, 5, insulating
spaces; 6, servomechanism (heating and cooling); =====, datum surface (7}); =====
controlled surface (73,); =====, controlling surface (73).

If we ignore radiation across the outer insulating space, the servomechanism is in thermal
contact only with the controlling surface. If the heat capacity of the servomechanism is
very small, then, whenever the thermal power changes, the servomechanism will rapidly
attain an equilibrium temperature which just suffices to make the heat flux across the
controlling surface equal to the new thermal power. The boundary condition at the
controlling surface then takes the form

—A(0T[0%) ;o = @, (1-4)
where @ bears a simple relation to the output of the regulator amplifier. In a two-valued
response regulator, for example, @ has successively the values +Q', —Q", +Q’, etc.,

while in a linear response regulator @ is given by

Q=—q(T3—T1) = —45,
where ¢ is the sensitivity of the regulator in calcm=2s~!deg~!.

The second limiting case is exemplified by the arrangement of figure 4. The controlling
surface is in contact with a volume of well-stirred fluid and the servomechanism consists
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of heaters and refrigerating coils immersed in the fluid, which may consequently be assumed
always to be at a uniform temperature 7; (see p. 415). In dealing with practical calori-
meters of this type we cannot ignore the effects of imperfect thermal contact between the
fluid and the outer (controlling) surface of the jacket vessel. Instead, we must ascribe to
the ‘boundary layer’ between the bulk of the fluid and the controlling surface a transfer
coefficient « (calcm~2s"!'deg~!), and the heat flux across the controlling surface is given

b
then by Q = k(T,—T)),

where 7} is the temperature at the controlling surface, x = 0. The boundary condition at
this surface then takes the form

—A(0T}0x), = <(T;~T5), (15)

%J
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Ficure 4. Section of an externally compensated adiabatic calorimeter with high heat capacity
servomechanism. 1, calorimeter vessel; 2, jacket vessel; 3, environment vessel; 4, insulating
space; 5, liquid environment (73); 6, heating and cooling coils; 7, stirrers; ===== , datum
surface (7)) ; == =, controlled surface (75); === =, controlling surface (7).

together with the subsidiary relation specifying (d7;/df). Thus, with a two-valued response
regulator, dTy/dt = +a', dTydt = —a”,
while with a linear response regulator

dT3/dt = —r(Ty,—T;) — 5,

where 7 is the sensitivity of the regulator expressed in reciprocal seconds.

The general solutions to the conduction equation (1-1) with the boundary conditions
(1-3) and either (1:4) or (1-5) are well known (see Carslaw & Jaeger 1947, § 43), butit does
not appear to be possible to deduce general relations describing the average behaviour of
the signal of a two-valued response regulator operating in either of these situations. The
nature of the difficulty is well illustrated by the case of a two-valued response regulator
operating in the situation described by equations (1-2), (1-3) and (1-4), the heating and
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cooling rates being + @’ and —Q”. By using the Laplace transformation (see Carslaw &
Jaeger 1947, § 120), we can obtain the steady periodic part of the function S = §(¢) in terms
of arbitrary values for the half-cycle periods during which the controlling action is -+ Q’
and — Q", respectively. Then, making use of the appropriate terminal values of S (see § 3
below) we can, in principle, solve for the half-cycle periods corresponding to steady periodic
behaviour. It seems, however, that in practice the relevant equations can only be solved
numerically, and an elaborate computation is necessary for each particular case. Since our
primary objective in setting out to obtain the average behaviour of the signal during a
calorimetric experiment is to compute a relatively small correction term to the observed
heat change, there is a strong case in favour of using approximate descriptions of the thermal
conduction processes in order to simplify the computation of the average behaviour of the
signal. Moreover, the approximations used in this paper enable some general statements
to be made about the effects of changing the relevant physical properties of the apparatus
upon the average behaviour of the signal.

2. NATURE OF THE APPROXIMATION
(a) The case of conduction across a liquid to solid interface

The cases in which the thermal conduction process upon which the operation of the
regulator depends is described by equations (1-2), (1-3) and (1-5) are exemplified by the
externally compensated adiabatic calorimeter arranged as in figure 4. We may, for con-
venience, assume that the bath of stirred liquid in which the jacket vessel is immersed (the
calorimeter environment) has a total heat capacity large in comparison with that of the
jacket vessel. This implies that the time rate of change of the temperature in the calorimeter
environment is effectively independent of the conduction processes across the wall of the
jacket vessel and depends only on the net thermal power disposed by the regulator servo-
mechanism.

The outer surface of the jacket vessel is inevitably separated from the bulk of the stirred
liquid forming the calorimeter environment by a ‘boundary layer’ of stationary or nearly
stationary liquid. Itis characteristic of such boundary layers that they have relatively low
thermal conductivity, although the detailed structure, and hence the apparent thermal
conductance, of the layer varies widely according to the nature of the solid surface, the
viscosity and rate of stirring, etc., of the liquid. If the thermal conductivity of the material
of the jacket is relatively large then, whenever the mean temperature of the calorimeter
environment is changing, the magnitude of the apparent temperature gradient (measured
normal to the surface of the jacket vessel) in the boundary layer will be much greater than
the magnitude of the steepest temperature gradient within the wall of the jacket vessel.
Consequently, if the wall of the jacket vessel is not more than a few millimetres thick, then
the temperature difference across the boundary layer will be much greater than the tem-
perature difference across the wall of the jacket vessel. The relevant properties of aluminium,
for example, are

A= 0-296cals"!cm~ldeg™!, p=2-85gcm3,
¢ = 0203 caldeg~'g™!, D = 0-512cm?s7!

(see Turner 1936), while the thermal transfer coeflicient, «, for water to metal contacts
usually lies within the range 0-01 to 0-1calcm~2s~'deg~! (Kay 1957). Then if a slab of
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aluminium 0-5 cm thick has one surface completely insulated and the other in contact with
a body of stirred water whose temperature is increasing uniformly, it is easily established
using equation (2-5) below, that the temperature difference across the boundary layer is
between 10 and 100 times as great as the temperature difference across the metal slab
itself. Similar results are found with other metals whose thermal conductivity is relatively
high.

In a practical calorimeter of the type illustrated in figure 4 the wall of the jacket vessel will
almost certainly be less than 0-5 cm thick so it seems reasonable to neglect the temperature
difference across the wall itself in comparison with the temperature difference across the
boundary layer. This is equivalent to assuming that the boundary layer has finite thermal
conductance but zero heat capacity while the wall of the jacket vessel has finite heat capacity
but infinitely large thermal conductivity, so that the whole of its extent, including the inner
(controlled) surface is at a uniform temperature which may be denoted by 7;.

The situation in the calorimeter environment is essentially similar to that in the jacket
vessel wall. That is to say, provided that the stirring system is carefully designed to effect
both rapid circulation and good mixing throughout the whole of the environmental liquid,
the temperature gradients in the bulk of the liquid during a change of mean temperature are
negligible in comparison with the temperature difference across the boundary layer. It is
then convenient to define the controlling surface as the outer limit of the boundary layer,
so that the temperature 75 at the controlling surface is identical with that in the body of the
calorimeter environment. The rate of heat transfer across unit area of the boundary layer

is then given bY Q= K(T3-—T2) (cal cm—2 S'l), (2,1)
and the corresponding rate of change of 7}, is

d7, _ €@
& (2-2)
where [ is the thickness of the jacket vessel wall, so that pcl is the heat capacity per unit
surface area of the jacket vessel wall. Equations (2-1) and (2-2) may be combined as

d7, «

g (B=T) = HT-T5). (2:3)
The coefficient 4 then has the dimensions of second~! and is analogous to a Newton cooling
coefficient. The effects of any small variation in « over the surface of the jacket vessel of
course disappear in this approximation, and measured values of the coefficient & represent

the behaviour of the whole surface of the jacket vessel.

(b) The special case of the liquid-bath thermostat

The arrangement of a liquid-bath thermostat is essentially similar to that just discussed.
Thus the servomechanism normally acts upon the bulk of the bath liquid, while all the
common types of signal source measure the temperature of a ‘controlled’ surface or region
separated from the bath liquid by a solid wall which gives rise to at least one boundary
effect. All signal sources of the liquid thermometer type obviously fall into this class and
it is found in practice that the behaviour of both mercury in glass and toluene in copper

51 Vor. 253. A.
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signal sources, for example, conforms closely to that predicted using equation (2-3). This is
true also of those types of resistance thermometer in which the heat capacity of the resistance
element and its support is large in comparison with that of the outer sheath. In dealing
with thermostats of this type we are of course primarily interested in the behaviour of the
temperature 7 in the bulk of the bath liquid rather than in that of the temperature 7,
registered by the signal source; but it is a simple matter to obtain the variation of 75 from
the analysis of the corresponding calorimeter regulators (see § 7 below).

(¢) The case where the controlling surface is heated directly

When, as in an externally compensated adiabatic calorimeter arranged according to
figure 3, the thermal conduction process determining the operation of the regulator is
described by equations (1-2), (1-3) and (1-4), an approximation may be derived in terms
of the limiting case of ‘steady-state’ conduction across the uniform slab 0 <x < /. It is
easily established that if the temperature at the controlling surface, x = 0, of the slab is
increased at constant rate over a sufficiently long time, the temperature profile across the
slab will, with increasing time, tend towards a parabolic form defined by

02T/0x? = constant (0 < x < ).

This of course implies that (97/d¢) is constant and has the same value at all points in the
slab, and under these conditions equation (1-2) may be integrated directly to give

AT, P dT,

Li-Ty=9pa ~ab dv°

(2+4)
where T; is the temperature at the surface x = 0 and 7, is the temperature at the surface
x = [. The approximation then consists in assuming that (d7;/d¢), the time rate of change of
the temperature at the controlled surface, is given by

d7, 2D
Tf=7;(73~75), (2:5)

whatever the variation with time of the temperature 75 at the controlling surface. The
quantity 2D/I? is then analogous to the coefficient 4 in equation (2-3), and the equations
(2-3) and (2-5) are therefore formally identical.

Comparison of cases (a) and (c)

The physical situations upon which equations (2-3) and (2'5) are based differ in im-
portant respects and, correspondingly, the nature of the approximation is different in the
two cases. The accuracy of equation (2-3) is determined mainly by the physical properties
of the material of the jacket vessel and those of the boundary layer at the outer surface of
the vessel, and is only slightly dependent on the form of the function 7; = 7;(¢). Equation
(2-5), on the other hand, approaches exactitude with increasing time whenever (d?7;/ds?)
remains zero, but becomes formally incorrect whenever (d%73/d#?) differs from zero. Com-
parison with an exact analysis of the case of the uniform slab with no heat flow at the
surface x =/ when the temperature 7; at the surface x = 0 is constrained to a simple
function of time (see Carslaw & Jaeger 1947, §§ 37, 38) indicates that when, as with a two-
valued response calorimeter regulator, 73 = 75(¢) is a periodic function of the ‘saw-tooth’


http://rsta.royalsocietypublishing.org/

=

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ADIABATIC CALORIMETER REGULATORS 417

type, equation (2-5) predicts incorrectly the phases of 7; = T;(¢) at which stationary values
of T, (assuming the mean value of T} is constant) occur; but provided that the period of
T; = T(¢) is relatively large equation (2-5) predicts fairly accurately the behaviour of 7,
near the phases of 7; = T5(#) at which (d7,/d¢) has its greatest magnitudes. Now the greatest
magnitudes of (d75/df) obviously occur immediately prior to the reversal points of 75 = T5(%).
In a two-valued response regulator only these reversal points are directly determined by
the variation of the signal, § = 7, — 7}, where 7] is the datum temperature, so that the period
of T; = T;(¢) should be predicted with fair accuracy. This analysis takes no account of the
fact that in practice the conduction processes across the wall of the jacket vessel are modified
by the finite curvature of the jacket vessel wall, and by the ‘end effects’ at the top and
bottom. The first effect is unlikely to be important in the case of a relatively thin-walled
vessel, and since the end effects operate only upon a small fraction of the total surface area
of the jacket vessel they are almost certainly negligible, at least in the context of the proposed
approximation.
Application of the  steady-state’ approximation

There remains the difficulty that equation (2-5) treats 7; as the primary variable, whereas
in the situation to which equations (1-2), (1-3) and (1-4) refer, the primary variable is the
heat flux @ per unit area at the controlling surface, x = 0. With a two-valued response
regulator @ = Q(¢) is a ‘square-wave’ function defined by + @’ and —Q". Provided that
the periods of constant response are relatively long in comparison with the decay time of
the exponential terms in the general solution to equations (1-2), (1-3) and (1-4) the
temperature profile 7'= T(x) between x = 0 and x =/ at the reversal times of the con-
trolling action (the times at which @ = 4 @' is replaced by @ = — Q" and vice versa) differs
only insignificantly from the parabolic form. Now the increase in the mean temperature
in the region 0 < x < [ during a positive half cycle (@ = + Q") is necessarily

AT =+ Qltl/locl,

where ¢, is the duration of the half cycle. If 7; differs from the datum temperature 7} by
—0, at the commencement of a positive half cycle and by 6, at the termination of that
positive half cycle, then, in the case where 7] remains constant the increase in 75 is

ATy = (0,+05).
If the terminal values of §' = T, —T] are respectively —¢ and + ¢ (see § 3), then the terminal
values of (73—7;) are —(0,—¢) and + (0,—¢@). Assuming 7" = T(x) to be parabolic, it
follows that the total increase in 75 is related to @ by
ATy = Q'tyfpel+3(0,— ¢ +0,—9),

so that the average heating rate during a positive half cycle is close to

123049 :
¢ = pel t° (2:6)
Correspondingly, the mean cooling rate during a negative half cycle is close to
v 3Q" 49 :
a" = ol 1, (2:7)

51-2
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where £, is the duration of the negative half cycle. The use of these relations involves only
a comparatively simple successive approximations technique, using the tables of appendix
IT to obtain values of ¢, and #, which are then inserted in equations (2-6) and (2-7) to obtain
better values of ¢’ and ¢” and so on.

Usefulness of the ‘ steady-state’ approximation
An indication of the range of usefulness of the approximation is obtained by applying
equation (2-5), together with the defining relations, to a linear response thermostat regu-
lator. Turner (1936) has used a partial solution of equations (1-2), (1-3) and (1-4) to cal-
culate the amplitude and period of 7; = T;(¢) in such a regulator when the sensitivity has

that value above which the operation of the regulator is unstable.
In order to apply equation (2-5) to a linear response regulator it is convenient to define,
in addition to the signal, the thermal head H, the difference between the controlling and

datum temperatures S=T,~T, H=T,~T, (2-8)

where, as before, 77 is the datum temperature, 75 is the temperature at the controlled surface
and 75 is the temperature at the controlling surface. The defining relations for the regulator

when 7} remains constant are then
dS/dt = b(H-S), (2-9)

corresponding to equation (2-5), and
dH/dt = —nS, (2-10)

where 7 is the apparent sensitivity of the regulator expressed in reciprocal seconds, analo-
gous to the apparent heating and cooling rates of a two-valued response regulator defined
byequations (2:6) and (2-7). The ‘law of control’ may be formulated by linear combination
of equations (2-9) and (2-10) as

d v v
a.t(s—;H) —(v—b) (S~;H) —o, (2:11)
where v is defined by v2—vb+41rb = 0. (2-12)
Integration of equation (2-11) leads to
£t ol fi__ pal
S = S0 %_gi +bH°[e/;_; ] (213)

where S° and HO are the values of § and H when ¢ = 0 and « and £ are the roots of equation
(2-12). Whenever 7 is greater than 15, S, and hence H also, is a periodic function of time,
the period being o

TR
The amplitude of S always decreases with increasing time in proportion to e~%; that is
to say, the use of equation (2-5) predicts that the operation of the regulator is stable for all
values of the apparent sensitivity 7. Now according to equations (2-9) and (2:10) the
magnitude of (H—S) has maxima whenever § is zero, and again the temperature profile
T = T(x) may be assumed to depart only insignificantly from the parabolic form at these
stationary points of H = H(¢). Since S is zero at the stationary points of H = H(¢) in any

(2-14)
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linear response regulator, it follows that for a particular cycle the amplitude of H will be
close to that which would be expected if the apparent sensitivity » were given by

r = 3q/pcl, (2:15)
where ¢ is the actual sensitivity of the regulator according to the relation

Q = —QS,

@ being the instantaneous heat flux per unit area at the controlling surface. Substituting
for 7 in equation (2-14) gives 3 3
t:2n/[b(ﬁ%—% ):I . (216)

According to Turner’s (1936) analysis, there exists a critical value of ¢ for which the
periodic function H = H(#) maintains a constant amplitude; with higher values of ¢ the
amplitude of H = H(¢) increases with increasing time; that is to say, the operation of the
regulator is unstable. The critical value of ¢ thus represents the complete breakdown of the
assumptions underlying equations (2-5) and (2:15).

When the material separating the controlling and controlled surfaces is aluminium,
with the properties quoted on p. 414, the critical value of ¢, according to Turner’s calcula-
tions, is close to

Qarit, = 17'6/1/1) (2'17)
and the corresponding value of the period is
toi = 111802 = 1-144/b. (2-18)

Introducing the value of ¢ given by equation (2:17), together with the appropriate values
of A, p and ¢, into equation (2-16) and putting b equal to 2D/[? leads to

toi = 1-20002 = 1-228/b. (2:19)

In both cases £, is close to 1:2/b, while the critical value of 7 is close to 27-0b, corresponding
to ¢ close to 9-0bpcl. It must be noted that according to equation (2-14) a relatively large
alteration in 7 produces only a small change in #. Nevertheless, the agreement between
equations (2:18) and (2-19) is such as to suggest that the approximation represented by
equations (2-5) and (2:15) will predict at least the period of H = H(¢) in a linear response
thermostat regulator with fair accuracy whenever the sensitivity ¢ is small in comparison
with the value given by equation (2:17). It may then be inferred that equations (2-5), (2-6)
and (2-7), in the case of a two-valued response regulator, also predict with fair accuracy the
half-cycle periods of H = H(t), provided that each half-cycle period exceeds, say, 1/b. This
implies that, as stated above, the behaviour of the signal close to the reversal points of
H = H(¢) is also described with fair accuracy by this approximation.

The average behaviour of §' over many cycles is obviously closely connected with the
behaviour of § close to the reversal points of H = H(¢). It then seems reasonable to expect
that both the approximations described above will predict the average behaviour of §
accurately enough for practical purposes, such as the evaluation of correction terms to
calorimetric experiments by means of equation (1-1).

Since the numerical results corresponding to the second approximation, equations
(2-5), (2-6) and (2-7), can easily be obtained from those corresponding to the first approxi-
mation, equation (2-3), only the latter case will be discussed here.
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3. UNIFORM OPERATION OF TWO-VALUED RESPONSE REGULATORS

The principle of a two-valued response regulator is that as soon as the signal exceeds a
characteristic small positive magnitude + ¢, there results a response in the negative sense,
that is to say in the sense that will eventually decrease the signal to less than zero. This
negative-going response persists with constant magnitude until the signal attains the value
—¢, when a positive-going response is initiated. This persists with constant magnitude until
the signal again attains the value +¢. The magnitude of the response may or may not be
the same in both senses. In an externally compensated adiabatic calorimeter arranged as
in figure 4 the two responses are, respectively, heating and cooling of the calorimeter
environment.

The method employed here to analyze the behaviour of such a regulator depends on
establishing the existence, in each of two situations, of a condition of uniform operation towards
which the behaviour of the regulator always tends so long as that situation persists, irre-
spective of the initial conditions. These two situations are that in which the datum tem-
perature 7] remains constant, and that in which 7] varies linearly with time. While the
analysis requires only straightforward algebra, a rigorous examination of the general case
in which the positive-going and negative-going responses are unequal inevitably involves
a great many logical steps. Therefore, in order to simplify the discussion as far as possible
we shall first examine in detail the case in which the two responses are of equal magnitude.
The conclusions pertaining to this case are extended to the general case in the following
section.

With a two-valued response regulator applied to an externally compensated adiabatic
calorimeter of the type illustrated in figure 4 the regulator response may conveniently be
measured by (d7;/d¢), the time rate of change of the temperature in the calorimeter en-
vironment, the signal being a measure of the difference between the controlled and datum
temperatures. When the heating and cooling rates of the calorimeter environment are
equal the defining relations are, for a positive half cycle,

d7;/dt = +a,
commencing when the signal § = 7,—7] decreases through —¢, and for a negative half
cycle dTy/dt — —a,

commencing when § increases through +¢. The rate a(degs™!) is characteristic of the
particular apparatus. Each half cycle may be taken as commencing when the magnitude
of the signal § is ¢ and increasing, and terminating when the signal next attains the value
equal in magnitude and opposite in sign to the initial value. Taking as positive and negative
half cycles the periods during which 7j is increasing and decreasing respectively, the time
variation of Tj is given by

T, = T5+4at (positive half cycle),

T,=T;—at (negative half cycle),} (31)

where the prime and double prime indicate the value of the variable at the commencement
of the half cycle. In these equations the variable ¢is given the value zero at the commence-
ment of each half cycle, so that it is properly described as the duration of the half cycle.
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Although this usage differs from that in the preceding sections, equation (2-3), being a
differential form, remains valid, while the difficulties which would arise from the dis-
continuous variation of the time derivatives of 7; are avoided.
Introducing the thermal head H = 7;— T, into the equations (3-1) leads to

H= Hniat_ft (ﬂ) dt, (3-2)
N

where H, is the value of H at the commencement of the nth half cycle and the sign of the
second term is determined by whether the nth cycle half is positive or negative. Then,
introducing into equation (2-3) the thermal head H = 7T, —7] and the signal § = 7T,—T],
and substituting for H according to equation (3-2), we have

1ds vdT, . 14T, .

Uniform operation when T remains constant

For the first positive half cycle the initial value of §'is —¢, and the solution to equation
(3:3) is S — H,—a/b+at-+ (afb—p—H,) e (3-4)

This positive half cycle terminates after a period ¢, when § attains the value -+¢. The
corresponding value of H is H, — H,+at, (3-5)
and this is then the initial value of H at the commencement of the succeeding negative half
cycle. This negative half cycle is described by

S = H,+a/b—at—(a/b— ¢+ H,) e (3-6)

The negative half cycle terminates after a period £, when S attains the value —¢. The
initial value of H for the next (positive) half cycle is then

The detailed behaviour of H may be deduced by replacing S, on the left-hand side of
equations (3-4) and (3-6), by its appropriate terminal values. Thus at the termination of
the first positive half cycle,

(a/b—¢—H,) e~ —(afb+¢—H,)+at, = 0. (3-8)

Equation (3-8) has a real positive solution in ¢, for all values of H,. Further, the behaviour
of the regulator subsequent to the first complete cycle is always subject to certain regu-
larities. Thus it follows from equation (2-3) that if S is increasing while 7] remains constant,
then S must be less than H, so that H, always exceeds +¢. Consequently, the coefficient of
the exponential term in equation (3-6) is always less than —a/b, and during the negative
halfCYCle S<H2-+-d/b_‘dt,
so that at the termination of the negative half cycle

H,> —alb—¢.
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It is easily established in terms of equation (2-3) that Hj is always less than —¢, so that
irrespective of H, —¢ > H,>—¢—alb, (3-9)
and correspondingly +¢ < H, <+¢-+alb. (3-10)
The restrictions (3-9) and (3-10) necessarily apply to all subsequent cycles. Equation (3-8)
may be written (afb—¢— Hy) e-8e-Hle _(qfh 1§ — H,) — 0, (3-11)
while for the succeeding negative half cycle

(a/b— ¢+ H,) emtH-H9le — (afp + ¢+ Hy) = 0. (3-12)
Equations (3-11) and (3:12) have a symmetrical solution 0,

¢ <0 <¢-+talb, (3-13)

defined by In %%%:—% = —2—? = —bt,, (3-14)
such that if 4, = —0, then H, =+, H; = —0§ and so on. This is the condition of uniform

operation. Then, given the values of ¢, b and ¢, equation (3-14) defines the amplitude 20
of the periodic variation of the thermal head H, and hence the half cycle period ¢,, when the
condition of uniform operation obtains. Since equation (3-14) can be regarded as a special
case of the general treatment presented in § 4 below, the technique for solving it need not
be discussed here.

It remains to show that the behaviour of the regulator always tends towards this con-
dition of uniform operation when 7] remains constant. If ; is denoted by — (0+#%) and
H, by +(0+j), then equation (3-11) may be written

J—=h=(alb+@—0—h)—(alb—P+0-+h) e b@o+h+iia (3-15)
whence, by virtue of equation (3-14),
e-b+ila — [a+b(0—¢)] [“‘b(ﬁ—¢+j)_] )
la—b(0—¢)] [a+b(0—¢+h))
The condition (3-13) ensures that
a+b(0—¢) >a—b(0—9¢)

and that both these quantities are positive. Now if £ is any magnitude between zero and
unity, e * and (1+4&)/(1+£+a) converge towards zero as « increases towards infinity, and
are equal when a has some value between —1-59§ and —2£, depending on §, while all

functions (14-8) (1 —E—a+ea)
(1—&) (1+E-+ea)

become equal when « has the value —2£. Then, for positive «,

(3-16)

(0<e<)

T > e > (3:17)

By analogy, for every positive %, equation (3:16) defines a unique j, also positive but less
than (a/b—0+¢). Similarly when £ lies between zero and —1-59(b/a) (§ —¢), equation


http://rsta.royalsocietypublishing.org/

. |
/I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ADIABATIC CALORIMETER REGULATORS 423

(3:16) defines a unique j, lying between zero and — (6/a) (f—¢), according to the con-
ditions (3-9) and (3-10). Since the situation

h<—(6—9)
cannot occur after the first complete cycle, the situation
h<—1-59(0—9¢),
which may lead to j greater than zero, may be ignored. Then, after one complete cycle,
alb—0+¢>h, j>—0+¢, (3-18)

and /% and j always have the same sign. When both % and j are positive the right-hand side
of equation (3-16) is less than unity but greater than zero. Conversely, when % and j are
negative, the right-hand side of equation (3-16) is greater than unity. For the first case,
expanding both sides of equation (3-16) leads to

Ja=0(0—9) (3-19)

h=at+b(0—¢)
Thus the ratio j/k is always less than unity. As % is made progressively smaller the in-
equality (3-19) approaches the corresponding equality. When % and j are negative, the same
result is achieved by first inverting equation (3-16). Thus, irrespective of H;, the condition
(3-18) holds good after the completion of one cycle and the departures of succeeding |H,|
from ¢ decrease and approach conformity to a geometric progression of the ratio (3-19).

General aspects of behaviour when T, varies

When 7] varies, the situation at the termination of a positive half cycle is, as before,

(afb—¢—H,) e~ —(alb+¢—H,) = 0, (3-20)
utty
but H, is now given by H, = H1+atl—~f t (%7-;1) ds, (3-21)

where u is the time of commencement, on an arbitrary scale, of the half cycle. At the
termination of the succeeding negative half cycle

(afb—¢+Hy) e~ —(afb+§—H;) = O, (3-22)
. uttitte (d7T,
u+tity ¢

The limits of integration take account of the fact that the variation of 7 is not determined
by the duration ¢, of successive regulator half cycles. To ensure that the half-cycle periods ¢,
and ¢, are finite positive quantities it is sufficient that

()
dt
The successive terminal values H, of H are subject to restrictions similar to those applying
when 7] remains constant; thus after the first complete cycle,

a> : (3-24)

max.

“¢+%(%), > H,y\ > —(afb+6), (3-25)
g (O) <y < (b tg) (320

ton+1

52 Vor. 253. A.
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The extreme limits are unchanged by variations of 7] (see the restrictions (3-9) and (3-10))
but when 7] is increasing the upper limit of H,,,, increases and may be positive, while the
lower limit of H,,,, is also increased. This suggests that uniform operation when 7] varies
corresponds to H,,,, and H,,, , having unequal magnitudes, i.e. this condition of uniform
operation is defined by

H=H,=H;=..=0, Hy=H,=H;=...=0,. (3-27)
The terminations of the first two positive half cycles are then described by

(afb—¢—H,) e~ —(afb+¢—H,) = 0,
(afb—¢—Hy) e~ —(afb+¢—H,) = 0.

If H, = Hj, then H, = H, only if t, = t;; H, and H, are related to H, by equations (3-21),
(3-23) and by

(3-28)

u+iy+io+is
H4:Hl+at3+f ! (dT)dt

d¢

The condition (3-27) thus requires that the integrals in equations (3:21) and (3-28) are
equal, and the condition (3:27) can only be satisfied if 7] is constant or varies linearly
with time.

utit+ia

Uniform operation when T, varies linearly with time
When 7] varies according to T, = TY+pt, (3-29)
the relation between the first two terminal values of H is given by equation (3-20) together
with Hy = H,+(a—p) (330)

while the second and third terminal values of H, defining the first negative half cycle, are
related by equation (3-22), together with

Hy = Hy—(a+p) ty. (3-31)

The condition of uniform operation is then defined by substituting in equations (3-20)
and (3-22) according to the conditions (8-27). Taking account of equations (3:30) and
(8-31) leads to the simultaneous equations

—4) b

—b(0, _ _ .
In a—l-b( —5) = a-p<01+02) = —bt,, (3-32)
b(O,—¢) _ b _ :
lna+b(6 4= a+p(¢91+6'2) = —bt,. (3-33)

These equations have a unique real solution 6, = 0, conforming to the conditions (3-25)
and (3-26), provided that the magnitude of p is less than «, and is not zero. The method for
obtaining this solution, as in the case of equation (3-14), follows that used in the general case
discussed in § 4. When p is zero, both equations (3:32) and (3-33) reduce to equation (3-14).
That the operation of the regulator when 7] varies linearly with time always tends
towards the conditions (3-27) may be established by the method used to derive the relation
(3-19). Thus if, in equation (3-20), H, is denoted by — (6, +4%) and H, by + (6,-+7), then

substituting for ¢, as
8 ' t = 0,40, +h+) (3-34)
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ot a—py — 19000, =3 471 [a+b(0,—¢)] ,
leads to (h+ la=p) —, T HO S DI P (3-35)

The corresponding relation obtained from equation (3-22) with

Hy=—(0,+k), t,= Qﬁzz_l_-%iik’
i osmiaty — [2—0(01—3+K)] [a+b(0,—¢)] .
' then ‘ [+ 60— 6] [ 06, ~ )] (5:39)
An argument similar to that used to establish the relation (3:18) may be used to show that,
provided one full cycle of the regulator operations has already been completed, the quan-
tities %, j and £ in equations (3-35) and (3-36) have always the same sign. Combining these
equations after expanding the exponential terms in series leads to

[a b(0,—¢)] [a—b(0,—¢)] (3-37)
S[at (6,9 [at 50,9
Since the form of equations (3-32) and (8-33) requires that when p is between zero and
+a, 0, lies within the limits +6,, while the condition (3-26) ensures that
alb > 0,—¢ > 0,
it follows that under these conditions the ratio £/4 is always less than unity. Conversely
when p is between zero and —a, 0, lies within the limits +6,, while
alb > 6,—¢ >0,

and again the ratio £/4 is less than unity, so that the operation of the regulator is always
stable. While this might have been inferred directly from the analogues of equations (3-4)
and (3-6), the relation (3-37) gives a measure of the fractional diminution over a complete
cycle of the initial departure from the condition of uniform operation.

Behaviour of the signal during uniform operation

When uniform operation obtains during an increase in the datum temperature 7] linear
with respect to time, the behaviour of the signal §' during a positive half cycle is described by

= (a/b+0,—¢) e —(a/b+0,) +(a—p) 1. (3-38)
The minimum value of §'is then given by
. b, a0 {L( _ )} .
Swin. = — 0, 5T —\5 +0,—¢ (3-39)
During the succeeding negative half cycle,
= —(a/b+0,—¢) e+ (a/b+0,) —(a+p) 1, (3-40)
and the maximum value of S is
a+
Suwe. = +0— 55210 2 (3+0,-9)). (3-41)

It is evident that as the ratio p/a increased towards unity, both the maximum and minimum
values of S decrease, whereas it is easily established in terms of equations (3-32) and (3-33)

that both 6, and — 6, increase.
52-2
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426 A. J. B. CRUICKSHANK ON
Integrating equation (3:38) between ¢/ = 0 and ¢ = ¢;, and taking account of equation
(3-30) leads to )
" Sdt = 42 (0,40, 2¢) — ‘9 Oit0a[e 15, g )] (3-42)
0 b a—p b
while the corresponding integral obtained from equation (3-40) is
2,1 0,+0, )
[ sat=—3(0+0,—20) 1 22 G100 | (343)
Thus the time integral of § over a complete cycle is
Ky 1 +1(62—p2 ( ) .
St =5 040 (=2 75) G- (545 (344

where S is the average value of § over the complete cycle. Now the period of the complete
cycle is

bty — (0, +e)(aip alp)

so that S =—plb+1(6,—0,). (3-45)

It is implicit in the form of equations (3:32) and (3-33) that the magnitude of the first term
on the right-hand side of equation (3-45) must always exceed that of the second term, so
that when the datum temperature 7] is increasing, i.e. when p is positive, the mean signal
S is negative, and vice versa. Equation (3-45) also indicates that the mean signal S is
less than the mean value of the thermal head H by the amount p/b, which is the value of
(T3 —T,) which would just suffice to keep 7, increasing at the rate p.

The behaviour of the signal when 7] remains constant is easily deduced from equations
(3:42) to (3-45). In particular, the maximum and minimum values of S, during negative
and positive half cycles respectively, are

Smax_:+6—%ln{1+§((9-«¢)}, A a+b1n{1+ - ¢)} (3-46)

while the time integrals of S over positive and negative half cycles respectively are
¢ te
f 'Sdt = — 248, f Sdt = 1 24/b. (3-47)
0 0

A point of practical interest concerning the two-valued response regulator with equal
heating and cooling rates is that, as may be established from the numerical data presented
in appendix I, the variation of ¢, and 0, is very nearly linear with respect to p for magnitudes
of p/a less than about 0-5. When this condition is fulfilled, equation (3-45) may be written

in the form S=—(p/b) (1—K), (3:48)

where K is defined by 16(0,—0,) = Kp.

K depends only on b¢/a and approaches unity as b¢/a approaches zero. Equation (3-48)
does not, however, suffice to evaluate by means of equation (1-1) the correction 47 to an
observed change AT in the temperature 7} of the calorimeter vessel, since it refers only to
uniform operation (with p constant). In a real experiment (d7]/d¢) necessarily changes,
giving rise to periods of non-uniform operation the detailed configurations of which depend
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on the form of the variation of (d77/d¢), on the phase of the regulator cycle at which any
extreme values of (d27}/d#?) occur, and of course on the rapidity with which uniform
operation is re-attained. Consequently the total time integral of S over a complete experi-
ment is subject to a definite uncertainty and

f:Sdt# f ( )dtig“_‘l;;i(ATié (349)

where { is the uncertainty in the time integral of § arising from departures from uniform
operation. The evaluation of { in one simple case is discussed in appendix I.

4. TWO-VALUED RESPONSE REGULATORS WITH UNEQUAL HEATING AND COOLING RATES

Let the heating rate (d73/d¢) of the calorimeter environment during a positive half cycle
be +a’ and the cooling rate during a negative half cycle be —a”. Then at the terminations
of the positive and negative half cycles respectively, when 7] remains constant,

(@'/b—¢—H,) e~ —(a'[b+¢—H,) = 0, (4-1)
(@"/b—¢+H,y) e~ —(a"[b+¢+H;) = 0, (4-2)
where H,=H +adt, H;=H,—a"t,. (4-3)
It is easily established in terms of equations (4-1) and (4-2) that while uniform operation is
established under these conditions it does not correspond to H, = —H,. Putting
H =Hy=—0,, H,=+0, (4-4)
in equations (4-1) and (4-2) leads to
a —b( —¢)_ b _ :
In Sy — g ) = ot (4:5)
a’ —b( ¢2 b L )

The symmetry of these equations requires that if " > 4”, then 0, > 6,, and vice versa, while
0, = 0, only if @’ = a”. The detailed behaviour of §, and 0, as " and a” change may be dis-
covered from the tables in appendix IT. The approach to the condition of uniform operation
defined by equations (4-5) and (4-6) is given by

k_[a"=b(0,—¢)][a'—b(0,—¢)]

TS 7 ’ 47

B @00, )] (50— o
where % and £ have the same significance as in equation (3-37).

When the condition of uniform operation obtains the time integral of the signal over
a positive half cycle is

i 1 2
[Isat— o o-on-%, (45)
while for the succeeding negative half cycle
" Sdt = (03— 02 +22 (4-9)
0 a b

so that for the complete cycle S =3(0,—0,). (4:10)
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Thus when 7] remains constant, if the magnitude of the heating rate exceeds that of the
cooling rate, the mean value of the signal is positive, and vice versa.

When 7] varies linearly with time according to equation (3:29), if a’ = a”, then the
condition of uniform operation is defined by

a'—b(l,—¢)  b(O,40,) )
N b, —g) T a—p (#11)

a"—b(0,—3)  b(O,+0,) _
lna"+b(0;~¢)’ - a'}+p2 = bty (412)

Provided only that a’ > p > —a”, equations (4-11) and (4-12) give an unambiguous defini-
tion of #, and §,. The approach to uniform operation is given by

k_[a"—0(0,—¢)][¢'—0(0,—¢)]
h = [a"+b(0,—¢)] [a'+6(0,—¢)]

in this case also. The time integrals of § over the positive and negative half cycles during
uniform operation are, respectively,

(4:7)

0,+0,a" .
f Sdt — 0 0, ¢)—»&1{?2 %—%—(02~01)], (4-13)
0,+0,1a"
[Psat=—3 0, +0,-20)+ B2 [ T+30-0) | (414)
Equations (4-13) and (4-14) have the same form as equations (3:42) and (3-43) and in the
present case also, S is given by — b+ 3(0,—0). (3-45)

Equations (4-13) and (4-14) differ, however, from equations (3-42) and (3-43) in that while
the latter can never sum to zero for p = 0, equations (4-13) and (4-14) sum to zero if

a—p=a"+p. (415)
When this condition is satisfied, adding equations (4-13) and (4-14) gives
3§Sdt - ‘9 Rl [ ; —(02—01>] (416)
while combining the condition (4-15) with equations (4-11) and (4-12) leads to
0,—0, = (a’"—a")[b (4-17)

which ensures that the right-hand side of equation (4-16) is zero.
In order to evaluate S when the condition (4-15) is not satisfied, it is necessary to solve
equations (4-11) and (4-12). Itis convenient to introduce the parameters
1= b(0,+0,)/(d —p) = by, (418)
1= (&' =p)[(a"+p) = bt (4-19)

when equations (4-11) and (4-12) may be written respectively,

B (1480,
a a

(4-20)

1"bﬁ//l+b¢/§ = e (1+b0” _é—?) (4'21)
a a
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Multiplying these equations by the factors (1 —e~7#)/a” and (1 —e~#)/a’ and adding leads to
o (1=t (1—emm)

7+1 Q= (4-22)

where Q= 2bd/(a’+a"). (4-23)

Equation (4-22) has a finite positive solution x for all positive 7 and ). It is interesting to
note that if 7 is replaced by 1/ and g is replaced by 7u, which is equivalent to interchanging
the values of ¢’ and «¢” and changing the sign of p, equation (4-22) transforms into itself.
This means that the value of (6, +6,) corresponding to 7 = X also occurs when 7 = 1/X.
By expanding the right-hand side of equation (4-22), neglecting powers higher than the
third, it may be shown that

(I—e#) (1—e™ ™) . qu (I_M),

1—e#rth T pt1 12
whence w3 =12Q(n+1) /5% (4-24)
Now equation (4-22) may be written
12(p +-1) (I—e ) (L—e™) gpu (| 14 ]
L A L .
W= 7 [Q~|— | i D P+l (1 12) . (4-25)

It follows from equation (4-24) that the second and third terms inside the brackets in equa-
tion (4-25) differ in magnitude by an amount small in comparison with €2, and equation
(4-25) may thus be solved numerically by successive approximations. Equation (4-25)
remains useful until Q exceeds about 0-2. For larger values of (), the right-hand side of
equation (4-22) is close to unity. Under these conditions a successive approximations
technique may be based on equation (4-22) itself, in the form

h= 77+1[Q+(1—e-ﬂ) (l—e"”‘)]. (4-26)

v 1 —e 4+l
The relation between § and # may be established as follows. Rearranging equation

(422) in the form 8 +H —2¢ — a’—l—a” I:(l —C—'“) (1 _e_n/,,):l
17T Y2 R 1 —e~#n+1) ’

and then substituting for §, —¢ according to equation (4-21) and for #,—¢ according to
equation (4-20) gives the two relations

a+ad | 1—e# a
Or—8 =" [1-_3—/4(%1)]“—’

b
a-+a'[ 1—e a
=9 =" [1 ~e"/‘(’7“):| b

The difference between these equations is

a+a"[fem—er] a—a"
b= =— [1_e~/«n+1)]+ 5 (4-27)

Combining equations (4-27) and (3-45) gives the required relation

< _ ¢ 7—1 e #F—e
°=0 7+1 1 —e‘ﬂ(ﬂ“”)]' (4-28)
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Equation (4-28) indicates that for a given value of Q, S depends only on the ratio 7 of
the periods of negative and positive half cycles, and is independent of the detailed relations
between a’, a” and p. In particular, equation (4-28) gives the explicit solution to equation
(4:10) for the case where p is zero. This implies that for a particular apparatus, if 7 is the
same in two cases characterized by p = 0 and p = 0, respectively, then the mean signal §
is the same in both cases, but in the case p == 0 both #, and —0@, are greater than in the case
p = 0 by an amount /b, which is that value of the difference (75 —7,) which just suffices to
keep the mean value of 7, increasing at the rate p. Further, equation (4-28) indicates that
Siszerowhen 7 is unity, and since replacing 7 by 1/ does not affect the value of the amplitude
(6,+0,) of the thermal head H, it follows from equations (4-11) and (4-12) that the values
of #, and 0, are interchanged by this operation and, according to equation (3:45), S changes
sign. Consequently a single set of solutions in S/¢ to equation (4:28) can be used to evaluate
S in the entire class of two-valued response thermoregulators with negligible time delay.
This point is discussed further in appendix II.

It is obvious that when &’ and a” are unequal there can be no general relation corre-
sponding to equation (3-48) in the case where @’ and a” are equal since S is not zero when
T, remains constant except when a’ and «¢” are equal.

5. EFFECT OF TIME DELAY IN THE SERVOMECHANISM

The foregoing discussion assumes implicitly that the negative-going controlling action
is superseded by the positive-going controlling action simultaneously with the signal
attaining the value —¢. With the arrangement of figure 4, however, and in many other
cases, it is impossible to avoid some delay between the signal attaining the value —¢ and
the initiation of the positive-going controlling action. The same considerations of course
apply at the initiation of the negative-going controlling action. It is therefore of some
practical importance to discover the effect on the behaviour of the regulator of this time
delay in the servomechanism.

When such a time delay exists, instead of a positive half cycle terminating when the
signal attains the value +¢, it continues until § attains some value +y,, depending on ¢,
on the magnitude 7 of the time delay and on the behaviour of (dS/d¢) during the half cycle.
Similarly the succeeding negative half cycle terminates with § = —1,. The equations
describing the behaviour of the signal § as a function of time can be rewritten in terms of
¥y and ¥, without formal alteration. Supplementary relations are of course necessary to
determine ¢, and ¢,; but since, according to equation (2-3), the magnitude of (dS/d¢) can
never exceed that of (df/d¢), it follows that

¢ <¢ <g+(@"+p)71, <V <+ (d—p)7,

where 7 is the time delay in seconds, assumed equal at both reversals of (dH/d¢).
In the simplest case, when the calorimeter vessel temperature 7] is constant and the
heating and cooling rates are equal in magnitude, the condition of uniform operation is

defined b
ome 4 H2n+l = mﬁ) H2n+2 = +0>}

5-1
S2n+1 = —;ﬁ, S2n+2 = “Hﬁ- ( )
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The analogue of equation (3-14) is then

a—b(0—y) 20
Sy B A L

and ¢ is related to the time delay by the fact that at 7 seconds prior to half-cycle termination
|S| = ¢. Then from equations (3-4) and (3-6) it follows that

¢ =—0+a(t,—1)—alb+ (alb+0—y) e b=, (5:3)

whence, in virtue of equation (5-2)
br a+b(¢_0+a7)
ebr = .

(5-2)

= b —0) (54)
Eliminating ¢ between equations (5-2) and (5-4) leads to
a 2eb7
0=¢—|—a1'—|—-b—|:1~i:-em:| (55)

If 7 is put equal to zero in equation (5-5) and 7 is put equal to unity in equation (4-22),
the two equations become identical. This suggests that this analysis might be capable of
immediate extension to the case a’ & a”, p = 0, 7 == 0, and this is in fact so.

Under these conditions the general condition of uniform operation is defined by

a'—b(l,—y,)  b(0,+0,) )
lna, b(ﬁ? ¢T) — - a} [)2 = —bt,, (5-6)

a"—b0,—y,)  b(0,+06,) )
lnaﬁu+b(6';—;}b ail’+—*p2 = —bt,, (5:7)

and ¥, and ¥, are defined by the fact that at 7 seconds before half-cycle termination | S| = ¢.
Then, during the positive half cycle

¢ =—0,—d'[b+(a'—p) (h—7)+(d'[b—Y,+0,) 7?77,

so that substituting for e~% according to equation (5-6) gives

by =b0,—a’ +[a' +bp—bly+b(a"—p) ] . (5-8)
Similarly, for the negative half cycle
by, = b0, —a"+[a"+bp—b0,+b(a"+p) ] €7". (5-9)

Equations (5-6) to (5-9) may be solved by a simple extension of the method developed
in §4. It is convenient to introduce the parameters z and 7 according to the definitions
(4-18) and (4-19). Then, multiplying equation (5:6) by (1—e~7#) and equation (5:7) by
(1—e~#) and adding leads to
mw b _ (1=e) (1—em) :

”+1_al+all (¢1+¢2) - 1 —e—#n+1) : (5 10)
In order to obtain the relation determining g in terms of 4, ¢ (¢’ +a"), 7 and 7, an expression
for (¥, +¥,) must be obtained from equations (5-8) and (5-9). Adding equations (5-8)
and (5-9) and rearranging leads to

s () = (@b et (1) (25 —1). (5-11)

53 VoL, 253. A.
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432 A. J. B. CRUICKSHANK ON
Combining equations (5-10) and (5-11) then gives the required relation in the form
[A—e) (1—e™m) :
T (512)
In order to solve for y it is convenient to write equation (5-12) in the form
ER! (e +er—2) ebr )
_7[1 + Q4 br— ] ] (5:13)

Expanding the exponential terms of equation (5:12) and neglecting powers higher than the
second gives an approximation similar to the relation (4-24)

/N
Thus if equation (5-13) is written as
12(p+1 elter—2)etr  gu nu?
B — —(”—zi[l +Qpr— " i (1mﬁ)], (5:15)

it follows from the relation (5-14) that the last two terms inside the bracket on the right-hand
side of equation (5-15) differ from unity by an amount small in comparison with (£2+-47),
and equation (5-15) enables solution for z by successive approximation. When either or
both of 4 and b7 are relatively large a successive approximation technique may be based
upon equation (5-13). It is interesting to note that with 7 = 0, equation (5-13) reduces to
equation (4-22), while with p = 0, 7 = 1, equation (5-13) reduces to equation (5-5).

The time integrals of S are, for the positive and negative half cycles, respectively,

[sdt =+ 0,40, ;ﬁz)wﬁ% %’—%wz—«ﬁl)], (516)
f Sdt = — 1 (0,+0p— 1, — ¢2>+a1,,i‘; Z+3(0, al)] (5:17)

so that in this case also S is given by equation (3-45). The problem is then to evaluate S in
terms of the parameters €, #, 7 and 7. Equation (5-10) may be written in the form

(0,+8) — -+ ) = S [ QLoem), (5:18)

Substituting for (¢,—¥,) according to equation (5-6) and for (6, —y,) according to equa-

tion (5-7) leads to L ' 1 —em
;ﬁl b 1*—*6—/‘(’71—1) > (5.19)

a" a'+ad'[ 1—e#
02—¢2 = —Ab‘_‘!_ b [1 —e_:“’("l+l)] . (5'20)

The difference between equations (5-19) and (5-20) is
a —I—a” e Mm—e+7 a —a"
O0y—0, = Yy—9,+ [1~e_ﬂ(n+1)]“|“ R

and substituting for (6,—6,) in equation (3-45) enables S to be expressed as

—1 —# N
§= g)Z+1 le e/f(77+l) +3 (=) (5-21)
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In order to eliminate (¥,—¢,) it is necessary to make use of equations (5-8) and (5-9).
The difference between these equations can be written in the form

$0e— ) = (1= [100,-0) ~ 0L F]+ - Brem. (522)

Combining equations (5:22) and (3-45) leads to

S(1—e) = Ha— ) + QT L=t (140 (5:23)
Eliminating 1(¢,—¥,) between equations (5-21) and (5-23) then gives the required
relation as ¢ p—1 -

It is immediately obvious that when 7 = 0, equation (5-24) reduces to equation (4-28).
Further, equation (5-24) confirms that in this case also, S is independent of the detailed
relationship between @, ¢” and p. This means that for a particular apparatus which has
well defined values of Q, b, ¢ and 7 it is possible to solve equation (5-13), and thence com-
pute S from equation (5-24) for a range of values of 7.

Equation (5-21) indicates the main difference between the behaviour of a two-valued
response regulator with time delay and that of an otherwise similar regulator having zero
time delay, but an appropriately larger ¢ so that the half-cycle periods are the same in both
cases. Consider two regulators, A having finite time delay (7 > 0) and B having zero
time delay (7 = 0), both having the same (a’4-4") and 4. Comparison of equations (5-6)
and (5-7) with equations (4-11) and (4-12) shows that for a given 7, 4, will be equal to u,

provided b5 =B ¥) (525)
But comparison of equation (5-21) with equation (4-28) shows that under these conditions
Sy =Sp+3(2—V1) s (5-26)

That is to say the behaviour of regulator A differs from that of regulator B in that the
temperature datum of regulator A is shifted from zero in the same sense as S. This shift
increases in magnitude with increasing 7 when 7 is greater than unity and with increasing
1/p when 7 is less than unity. Thus the magnitude of the mean signal § in a regulator with
finite time delay is always greater than that in an otherwise similar regulator with zero time
delay having the same (¢’ +a”) and b and exhibiting the same half-cycle periods ¢, and #,.

Two representative cases are examined in tables 1 and 2. Table 1 refers to a two-valued
response regulator having

b=0-05s"1, (a’'+a")=0-004degs™!, ¢ = 0-0004deg,
and table 2 refers to the case
b=010s"1, (a'+a") =0-005degs™!, ¢ = 0-005deg.

For values of the ratio 5 of negative and positive half-cycle periods between 1 and about 3
the mean signal is roughly proportional to (7—1)/(7+1), but this proportionality breaks
down for larger 5, while the effects of time delay become more obvious with increasing 7.
Consequently 7 is taken as 3 in both tables 1 and 2. The signal source of the regulator
53-2
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referred to in table 2 has the faster response, but correspondingly larger backlash, ¢. The
values of (a’'+a") have been adjusted to facilitate numerical computation. In both tables
the four left-hand columns describe the behaviour of the regulator with the quoted time
delay when uniform operation obtains. Only the negative half-cycle period, £,, is given since,
as 7 = 3, ¢, is simply one-third of ¢,. The two right-hand columns refer to the corresponding
regulator with zero time delay but having the same values of 4 and (a4’ + ") and exhibiting
the same ¢, and #,. The quantity Q* is then defined by

Q* = b(Y1+¥5)/(d +a"), (5-27)
where (¥, +¥,) is related to x by
Vit :%é ”TI_(I_fjl_(;(;s_W)], (5-28)

which is obtained by rearranging equation (5-10). The mean signal $* in the correspond-
ing regulator with zero time delay has been calculated by ignoring the last term in
equation (5-21).

TABLE 1. EFFECT OF TIME DELAY WHEN 0 AND ¢ ARE SMALL

T P t, 1038 Qx 1035*
) (s) (deg) (deg)
0 0-3830 22-98 1-38 0-0100 1-38
1 0-5530 33-18 2-83 0-0285 271
2 0-6975 41-85 4-36 0-0546 404
3 0-8252 49-51 5:90 0-0846 5-30
4 0-9410 5646 7-46 0-1186 646

The figures quoted in tables 1 and 2 illustrate the general conclusion that the propor-
tionate increase in the magnitude of the mean signal for a given small time delay is less when
b is large than when & is small, and greater when ¢ is small than when ¢ is large; but as the
time delay is increased the magnitude of ¢ becomes less important, and the mean signal is
determined primarily by b, (a'+4”) and the time delay 7. In fact when the time delay is
3 s or greater the positive and negative half-cycle periods are similar in the two cases studied
and the difference in the values of § may be attributed mainly to the difference in the values
of (a’+a") and the difference in p which is therefore implied by the condition 5 = 3.

TABLE 2. EFFECT OF TIME DELAY WHEN b AND ¢) ARE LARGE

T 7 ty 1035 Q* 1035*
(s) (s) (deg) (deg)
0 1-1646 34-94 5-04 0-200 5-04
1 1-:3280 39-84 6-91 0-271 6-31
2 1-4873 44-62 8-44 0-348 7-13
3 1-6437 49-31 9-96 0-431 7-84
4 17973 53-92 11:48 0-517 847

6. EFFECT OF AN AUXILIARY SIGNAL
It has been stated by Dole, Hettinger, Larson, Wethington & Worthington (1951) that
when the backlash in a two-valued response regulator is large a significant improvement in
performance may be achieved by incorporating in the regulator an auxiliary signal source
which, effectively, increases the total signal during the latter part of a positive half cycle
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and decreases the total signal during the latter part of a negative half cycle. A control
system essentially similar to that described by Dole ez al. (1951) is shown schematically in
figure 5. In this arrangement the auxiliary signal source is a multi-junction thermocouple
(A, B) connected in series with the main signal source, shown in the figure as also a multi-
junction thermocouple. Each of the two sets of like junctions in the auxiliary signal source
is in contact with a small electrical heater and is provided with light thermal insulation;
the common environment of the two sets of junctions and their heaters may be assumed to
be kept at constant temperature. The heaters are energized by the regulator servomechanism
so that during a positive half cycle, when the temperature 75 at the controlling surface is
increasing, only the junctions B of the auxiliary signal source are heated and during a
negative half cycle, when 7j is decreasing, only the junctions A are heated. Thus the
auxiliary signal is positive during the latter part of a positive half cycle and negative during
the latter part of a negative half cycle.

\9

ANANNNN

Ficure 5. Scheme of circuit connexions for a two-valued response regulator with auxiliary signal
source applied to an externally compensated adiabatic calorimeter. 1, calorimeter vessel;
2, jacket vessel; 3, 4, main servomechanism (heating and cooling); 5, amplifier and relays;
6, main thermocouple signal source; 7, auxiliary thermocouple signal source; 8, 9, heaters for
auxiliary signal source.

When either the junctions A or the junctions B are heated it may be assumed that the
temperature difference between A and B, and hence the auxiliary signal, will approach
an ultimate value such that the thermal power input is just balanced by the radiation and
conduction losses from the heated junctions, the unheated junctions having effectively
attained the temperature of the common environment. The e.m.f. produced by the auxiliary
signal source when thermal equilibrium has been attained is conveniently represented by
the magnitude @ (deg) of the main signal § = 7T,—7; (deg) which would give rise to the
same e.m.f.

During a positive half cycle the variation of the auxiliary signal will be close to

§=0—(P—s) e, (6-1)
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where s, is the value of the auxiliary signal s at the commencement of the half cycle and v
depends on the geometry of the auxiliary signal source. If the positive half cycle terminates
at t = t;, when s is equal to s,, then during the succeeding negative half cycle,

s =—Q+ (D+s,) e (6-2)

The terminations of successive half cycles are determined by the conditions (S+5) = +¢.
It is easily shown that since the limiting values of s are finite, the operation of the regulator
is stable for all positive values of ® and ». That is to say, provided that the datum tem-
perature 7] is constant or varies linearly with time, there exists a condition of uniform

operation for which Hyoi——0, Hyop—+ 02,} o)
Sons1 ==V Sonsro="+¥>.
Then the analogues of equations (5-6) and (5-7) are, respectively,
"—b(0,— ) b(l9 +0,)
1 a_l._,_2~_2_ A2y 64
e AR e o
"—b(0,—y,) b(0,+0,)
1 a 1 1/ 1 2/ . , 65

where the parameters 4 and 7 have the same significance as in §§ 4, 5. The terminal magni-
tudes ¥, and ¥, of the main signal are determined by the conditions for half-cycle termina-
tion, and by equations (6-1) and (6-2), the terminal values of the auxiliary signal s being
(p—9,) and —(§—1,), respectively. Making these substitutions in equations (6-1) and
(6-2) gives the required relations

(D+g—9) e = P—g 4, (6:6)
(O+¢—,) e = D—g -+, (6-7)
where o = v/b. The analogue of equation (4:22) is obtained by multiplying equation (6-4)
by (1 —e~7#) and equation (6-5) by (1—e~#) and adding
—en) (e

7]2{‘1 a +dll (¢l+¢.2) - ( —e —u(n+1) * (6'8)

Similarly, equations (6-6) and (6-7) may be combined in the form

(1—e ) (1—e o)

%(%1 _I_ %2) _¢ = @ 1 __e_alu(n_;,]) . (6'9)
Combining equations (6-8) and (6-9) then gives the explicit equation determining # as
i C(1—e ) (1—e ) 20® [(1—e o) (1—e %) .

p+1 Q= 1—e#tD g’ tq" 1— e+ ‘ (6:10)

Equation (6:10) has a finite positive solution in x for all positive €, «, 7 and ®. Equation
(6-9) then ensures that (¢, +¢,) is less than ¢, so that this type of auxiliary signal source
always reduces the effective backlash and can never cause instability.

When @ is large, so that 26®/(a’+a") is significantly greater than 1,

(’7;;3 (1) (6-11)
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When gu/(7-+1) is smaller than Q equation (6-10) is not susceptible to successive approxi-
mations, but equation (6-11) can be used, rewriting equation (6:10) in the form

_(d'+a") (p+1) {g2+(1———e‘ﬂ) (1—e™)  qu 1 20b®

~= 2naDb 1—e #th n+1 a+a"
260 [(1—e o) (1—e-mx)
_a'—l-a" 1_~e—oc‘u(77+l) }' (6'12)

In other cases either equation (6-10) or the appropriate analogue of equation (4:25) may
be used.
The time integrals of S are, for positive and negative half cycles, respectively,

0,+0,ra
[[sat =450 40—y =2 %—%wrﬁl)], (6:13)
0,40,
fOSdt=—;<el+92—:/fl—~¢2>+ oA [ S0 -0)], (6:14)

and, as before, S is given by equation (3-45).

Now equations (6-4) and (6-5) are formally identical with equations (5-6) and (5-7)
and consequently the derivation of equation (5-21) is applicable to the present case also.
The term (¢, —¥,) is defined by equations (6-6) and (6-7). Substituting in equation (6-9)
for (¢ —y,) according to equation (6-6) and then for (¢ —¢,) according to equation (6-7)
and subtracting gives the required relation as

e — e~ @IN
=) = Ty |- (615)
Combining equation (6-15) with equation (5-21) then gives the explicit relation for § as
n—1 er—e e~ — e~
QL] —e~ #(ﬂ+1] [1 _e—apm+l) (6°16)

The second term on the right-hand side of equation (6-16) is obviously positive when 7 is
greater than unity and negative when 7 is less than unity. It then follows that the magnitude
of the mean signal in a two-valued response regulator with an auxiliary signal source is
always greater than that in the corresponding regulator with no auxiliary signal source
having the same values of (¢’ +4") and b and exhibiting the same half-cycle periods ¢, and ¢,.

The effects of various auxiliary signal sources with various values of « and @ on a particular
two-valued response regulator are examined in tables 3, 4 and 5. The case examined has
the following values for the defining parameters

=0-05571, (a'+a") =0-004degs™!, ¢ =0-004deg, 7= 3.

The effects corresponding to smaller values of 7 are of course qualitatively similar to those
illustrated by the tables. As in tables 1 and 2, Q0* is the value of Q in the corresponding
regulator without auxiliary signal source, and as before it is defined by equation (5-27),
the quantity (¢, +¢,) being related to x# by equation (6-8). The mean signal $* in the corre-
sponding regulator without auxiliary signal source is calculated from equation (6:16)
ignoring the last term (see equation (4-28)). Table 3 illustrates the general conclusion that
when v is smaller than 4, although the marked decrease in the periodic time of the regulator
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might seem to imply an overall improvement in performance, there is always a marked
increase in the magnitude of the mean signal. This arises directly from the operation of the
auxiliary signal source itself. When v is equal to b, the case illustrated in table 4, the increase
in the magnitude of the mean signal is small for small @, and there may be some slight
reduction in the magnitude of S over a small range of values of ®. When v is greater than b,
table 5 illustrates the general conclusion that there is an optimum value of ® which gives
a significant reduction in the magnitude of the mean signal .S whenever 7 differs from unity.
Thus it appears that the criteria for satisfactory design of auxiliary signal sources are first
that the ‘response coefficient’ v of the auxiliary signal source must be greater than the
‘response coefficient’ 4 of the regulator itself, and second that the limiting magnitude ® of
the auxiliary signal must not be much greater than the backlash ¢ of the regulator itself.

TABLE 3. EFFECT OF AN AUXILIARY SIGNAL SOURCE HAVING v = 055

® @ ty 1035 Q* 1035
(deg) (s) (deg) (deg)
0 0-8800 52+80 585 0-1000 585
0-005 0-7510 4506 6-90 0-0659 456
0-010 0-6351 3811 8-21 0-0419 3-45
0-050 0-2102 12-61 25-30 0-0017 0-43

TABLE 4. EFFECT OF AN AUXILIARY SIGNAL SOURCE HAVING v = b

® P t 1035 Q* 1035*
(deg) (s) (deg) (deg)
0 0-8800 52-80 5-85 0-1000 585
0-005 0-6500 39-00 564 0-0446 3-59
0-010 0-4639 27-84 648 0-0173 1-98
0-050 0-1067 640 24-97 0-0002 0-11

TABLE 5. EFFECT OF AN AUXILIARY SIGNAL SOURCE HAVING v = 2b

® " ty 1035 Q* 1035
(deg) (s) (deg) (deg)
0 0-8800 52-80 5-85 0-1000 585
0-003 0-6568 39-41 441 0-0459 3-65
0-005 0-5091 30-55 3-95 0-0226 235
0-010 0-2753 16-52 506 0-0038 073

7. APPLICATION TO OTHER MODES OF COMPENSATION AND TO THERMOSTATS

The application of automatic regulation to facsimile compensated or internally com-
pensated adiabatic calorimeters presents one problem which does not arise with externally
compensated adiabatic calorimeters. In the first two cases it is necessary to measure pre-
cisely the total energy added to or abstracted from the facsimile calorimeter vessel, or the
test calorimeter vessel as the case may be, by the regulator. One method of achieving this
is to arrange continuous cooling of the calorimeter vessel, by circulating refrigerant in pipes
within the vessel, and to superimpose upon this a variable heat input from the regulator
servomechanism. The flow rate and the inlet and outlet temperatures of the refrigerant
can then be observed continuously, while it is relatively simple to attach an integrating
device to the output stage of any continuous response regulator (see Buzzell & Sturtevant
1951). With a two-valued response regulator, provided the heating and cooling rates
remain constant, it is necessary only to evaluate the sum of a selected number of positive
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half-cycle periods and the sum of the same number of negative half-cycle periods, extending
over the complete experiment. Alternatively, a set of thermocouple junctions within the
calorimeter vessel may be used to effect cooling by the Peltier effect (see Calvet 1938).
It is also possible, by reversing the current as required, to use a single multi-junction
thermocouple to effect both heating and cooling. When a two-valued response regulator
is used it is comparatively simple to make equal the magnitudes of the rates of heat transport
into and out of the calorimeter vessel. If' a continuous response regulator were used to alter
both the magnitude and direction of the current through the controlling thermocouple, it
would be easy to integrate the current passed, but to obtain directly the time integral of the
heat transported might present difficulties. It is of course extremely difficult to compute
the net thermal energy disposed by a two-valued response regulator whose heating and
cooling rates vary, but this type of regulator is only suited to controlling the temperature in
relatively large volumes, such as the environment of an externally compensated adiabatic
calorimeter arranged as in figure 4, and it would not normally be used with internally or
facsimile compensated calorimeters.

Many types of fluid-bath thermostat may be regarded as special cases of the externally
compensated adiabatic calorimeter illustrated in figure 4 in which the datum temperature
T, remains constant at a preselected value. It is easily established, moreover, that the
variation of the temperature registered by most common sorts of thermostat signal source,
or sensing element (mercury thermometer, mercury-toluene bulb, sheathed resistance
thermometer, thermistor, etc.) is adequately described by equation (2:3).

Facsimile compensation

The arrangement of a facsimile compensated adiabatic calorimeter is shown schematic-
ally in figure 2. Both the test calorimeter vessel and the facsimile calorimeter vessel have
thermal transactions with their common environment, but at any instant the rates of heat
transfer between each vessel and the environment will differ only by a small amount
depending on the difference between the surface temperature of the two vessels and the
mean temperature of the whole assembly (see §1). Thus during a complete experiment
the heat loss from the test calorimeter vessel exceeds that from the facsimile calorimeter
vessel by an amount

0Q = —Cln+7 T3 [ Sdt (71

where C is the mean heat capacity of the test calorimeter vessel during the experiment,
T, is the mean temperature of the complete assembly and the integration extends over the
entire experiment.

In practice the several satisfactory ways of arranging the regulator servomechanism in a
facsimile compensated adiabatic calorimeter differ in important respects, and it is neces-
sary to consider each arrangement individually. Thus the servomechanism will normally
consist either of thermocouple junctions which effect both heating and cooling of the
facsimile calorimeter vessel, or of electrical resistance heaters operating upon both the
facsimile and the test calorimeter vessels. (The liberation of additional heat, over and
above that evolved by the test transformation, in the test calorimeter vessel alters the
temperature difference between the two calorimeter vessels in the same direction as does

54 VoL. 253. A.
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cooling the facsimile calorimeter vessel, while the difficulties associated with the refrigera-
tion of a small vessel are avoided.) Both types of servomechanism may operate either inside
the calorimeter vessels or directly upon the vessel walls.

The facsimile compensated calorimeter is usually used with the calorimeter vessels filled,
or nearly filled, with liquid. Thus in dealing with the two cases in which the servomechanism
operates inside the calorimeter vessels the temperatures at the outer surfaces of the vessels
may be assumed to be related to the internal temperatures by equation (2-3). The method
of analyzing the operation of two-valued response regulators used in §§3 to 6, however,
requires one further assumption. Thus we have assumed that in an externally compensated
adiabatic calorimeter the time rate of change p of the (datum) temperature at the outer
surface of the calorimeter vessel, changes only slowly in comparison with the period of
a two-valued response regulator. This implies that the thermal head, H = T;—1], can be
considered as undergoing only changes linear with respect to time

vy @iy, (712)
Now when the servomechanism in a facsimile compensated calorimeter operates only upon
the facsimile calorimeter vessel, the assumption underlying the relations (7-2) holds good,
and the analyses developed in§§ 3 to 6 apply directly. But when the servomechanism supplies
heat first to the facsimile calorimeter vessel and then to the test calorimeter vessel the
variation with time of the temperature in the body of the latter includes a stepwise com-
ponent, and consequently the datum temperature 7 follows a series of consecutive ex-
ponential curves, just as does the controlled temperature 75. This difficulty is overcome if,
in place of the thermal head H = 7T;—1], a new quantity, J, is defined as

J=T,-T, (7:3)
where T} is the temperature in the interior of the test calorimeter vessel. Now during a
positive half cycle dT" d7,

G G
and during a negative half cycle
a7, 0 dT,
d¢ Code
so that during positive and negative half cycles, respectively,

dJ dJ "
El? =a ﬁp? _( +p) (7'4)

_ //_+_p’

The equations (7-4) have the same form as the equations (7-2). Since the variation of both
T, and T, is assumed to follow equation (2-3), and since the two calorimeter vessels are
closely similar, both may be assumed to exhibit the same value of the coefficient 4; thus

dT, d7;
e =b(T,—T,), ~a—{ = b(T,—T)). (7-5)
Putting §' = T,—T, gives, for a positive half cycle,
14§

S+b di = +(a'—p) 1, (7-6)
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and for the succeeding negative half cycle
1dS ”
S+b dz =J,—(a"+p) ¢, (7-7)

where J| and J, are the successive terminal values of J.
Introducing the appropriate terminal values +¢ for § and assuming a condition of

uniform operation
P J=dy= . =—0,, Jy=J,=..=10, (7-8)

and then integrating equations (7-6) and (7-7) leads to the two equations defining the
condition of uniform operation

@ —p—b(0y—¢) _ 5(01+6,) _

(0, .
lna'——p—l—b(G —¢) a—p —bt, (7:9)
"+p—b(0,—¢) _ b (0,1+6,)
1 4 I //1 2 - . ¢
N THO ) = d s bt, (7-10)
Itis easily shown by integrating the explicit forms of § = §(¢) over the positive and negative
i h -
half cycles respectively that S = 3(0,—0,). (7-11)

It is not necessary to solve equations (7-9), (7-:10) and (7-11) directly for S, since intro-
ducing two arbitrary quantities ¢; and ¢, defined by

01 = ®1—l7/b: 02 = ®2+P/b (7'12)

transforms the equations into equations (4-11), (4:12) and (8-45), respectively. It then
follows that in a facsimile compensated calorimeter whose servomechanism heats either
the interior of the test calorimeter vessel or the interior of the facsimile calorimeter vessel
S has the same value, for given 4, ¢, (a’+a") and 7, as in a facsimile compensated calorimeter
whose servomechanism either heats or cools the interior of the facsimile calorimeter vessel.
The same value of S also occurs, of course, in an externally compensated calorimeter of the
type illustrated in figure 4; it is given explicitly by equation (4-28). These two arrange-
ments of the facsimile compensated calorimeter with two-valued response regulator differ,
however, in the physical significance which can be attributed to the quantities §, and 6,.
Thus when the servomechanism operates only upon the interior of the facsimile calorimeter
vessel, the test calorimeter vessel is assumed to be always heating (or cooling) under steady-

state conditions with a7,  dT,
@ =@ =t
so that To=T+plb, J=H+plb.

The terminal values of H are then — 6@, and +-0,, and these are related to the terminal values
— 0, and + 0, of J by the relations (7-12). When the servomechanism either heats the
interior of the test calorimeter vessel, or the interior of the facsimile calorimeter vessel on
the other hand, the quantities ¢, and ¢, defined by equation (7-12) do not correspond to
the terminal values of H = T;—T]. It may be noted that ®, and ®, may be calculated, by
means of equation (7-11) from § and (0, +6,), since (6,+0,) and (0, + 0,) are equal, but
0, and 0, can only be calculated by means of the relations (7-12) when p is known.
54-2
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Internal compensation

In an internally compensated calorimeter the servomechanism operates upon the test
calorimeter vessel itself. Provided that the calorimeter vessel is liquid filled, the tem-
perature 7] at the outer surface of the calorimeter vessel may be assumed to be related to
the temperature 77 in the interior of the calorimeter vessel by an equation of the form (2-3).
Since the temperature 7, at the inner surface of the insulating jacket is maintained constant,
itis convenient to take it as datum. To preserve the same sign convention as in the preceding
sections the signal § and the thermal head H may in this case be defined as

§=T,~T,, H=T,~T, (7:13)

There are two contributions to (d7;/d¢), one from the test transformation, denoted by p,
and one from the servomechanism. The defining relations for a two-valued response
regulator are then

dH[dt =a'—p (positive half cycle), (7-14)
dH/dt = —(a"+p) (negative half cycle), (7-15)
together with dS/dt = b(H-S). (7-16)

Note that a’ is here the cooling rate of the calorimeter vessel due to the servomechanism
and a” is the heating rate. From equations (7-14), (7-15) and (7-16) it follows that

1dS§

$+%3q; = Hanr +(@ —p) ¢ (positive), (7:17)
1 .
S+5 %Lj =H,, ,—(a"+p)t (negative). (7-18)

These equations have the same form as equations (7-6) and (7-7), and it is easily shown that
in this case also the mean signal is given by equation (4-28). The amplitude (¢, +0,) of H is
given by equation (II2, p. 455), but the difference (6,—0,) is given by equation (4-10)
instead of equation (3-45). Thus in the internally compensated calorimeter ¢, and 6, are,
like the mean signal, independent of the detailed relations between a’, ¢” and p, being
uniquely determined by the ratio 7 of the periods of positive and negative half cycles when
uniform operation obtains. As with the externally compensated calorimeter, the mean
signal is positive when 7 is greater than unity and vice versa, so that the tables in appendix
II can be used for this type of internally compensated calorimeter. Further, if ¢’ and a”
are equal the conclusions of § 3 apply to this case also.

The effects of time delay in the servomechanism and of an auxiliary signal source are also
similar to those arising in the case of an externally compensated calorimeter.

Thermostats

The analyses developed in §§ 3 to 6 can be applied to a liquid-bath thermostat by con-
sidering it as a special case of an externally compensated adiabatic calorimeter in which
the calorimeter vessel and the insulating jacket are replaced by a signal source, or sensing
element, having an effective conduction coeflicient 4 (s7!) (see§ 2 (4)). The liquid bath then
corresponds to the calorimeter environment. The signal source gives rise to a signal whose
magnitude is proportional to the difference between the temperature actually registered
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by the signal source and the preselected datum temperature at which the liquid bath is to
be controlled. The datum temperature of the signal source then corresponds to the calori-
meter vessel temperature 7.

When a two-valued response regulator is used to operate a liquid-bath thermostat, an
increase in the rate of heat loss from the liquid bath decreases the heating rate ¢’ and
increases the cooling rate ¢” by the same amount; the sum (¢’ + ") remains constant. This
sum is equal to the total thermal power disposed by the servomechanism divided by the
heat capacity of the controlled system (bath liquid, container and heaters). Whenever a’
exceeds a” there is a positive mean signal and vice versa. Since

§=$(6,—0,), (410)

where 6, and @, are the magnitudes of the positive and negative terminal values of the
thermal head, it follows that the mean temperature in the liquid bath differs from the
datum temperature by § which, for a particular apparatus, depends only on the ratio #
of the negative and positive half-cycle periods when uniform operation obtains. As with
the internally compensated calorimeter, S is given explicitly by equation (4-28).

The conclusions of §§ 5 and 6 concerning the effects of time delay in the servomechanism
and of the use of an auxiliary signal source apply also in the case of a two-valued respcnse
thermostat regulator.

It is interesting to note that when a linear response regulator is applied to a liquid-bath
thermostat the equilibrium situation corresponds to zero signal only when the heat loss from
the bath is zero (or is exactly balanced by a constant heat input independent of the regu-
lator). Otherwise the unbalance between heat loss and invariant heat input must be offset
by the action of the regulator, and this requires a non-zero signal. In fact the signal and
the thermal head (the difference between the temperature of the liquid bath and the datum
temperature) will both tend towards the same steady value, just sufficient to maintain
equilibrium. This implies that the behaviour of linear response thermostat regulators is
broadly similar to the behaviour of two-valued response regulators.

8. EXPERIMENTAL VERIFICATION

For the operation of a particular two-valued response calorimeter regulator to accord
with the predictions of §§ 3 to 6 it is necessary only that the thermal conduction processes
between the controlling and controlled surfaces follow closely equation (2-3). The additional
assumption in § 6 that the auxiliary signal approaches its limiting values exponentially is,
in the physical circumstances, unexceptionable; and in any case it is less important in the
analysis than is the assumption of the applicability of equation (2-3).

The figures quoted in § 2 show that equation (2-3) is followed closely by some conduction
processes between a stirred liquid and the inner surface of a vessel immersed in the liquid
when the vessel is of metal with relatively thin walls. These figures, however, give no
indication as to the accuracy of equation (2:-3), even in the situation just described, except
when nearly steady conditions obtain. It is difficult to estimate the effects of small devia-
tions from equation (2-3) when a major component of the variation with time of the tem-
perature in the liquid environment is a ‘saw-tooth’ oscillation, as is the case with a two-
valued response regulator. Further, only a relatively elaborate experimental technique
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would reveal directly the nature (or, indeed, the existence) of small deviations from equation
(2-3). An alternative approach to the experimental verification of the present treatment is
to compare, as far as is possible, the actual and predicted behaviour of calorimeters and
thermostats controlled by two-valued response regulators.

Now provided that the conduction coefficient 4, the sum (a’ - a") of the heating and cooling
rates, the backlash ¢ and the time delay 7 are known for a particular apparatus the theory
enables the behaviour of the apparatus to be related to the ratio 7 of negative to positive
half-cycle periods. Thus for every value ascribed to 7 as primary variable the theory defines
the amplitude (0, 6,) of the oscillation of the controlling temperature 75 about its mean
value, the half-cycle periods ¢, and ¢, and the mean signal S. In a calorimeter S measures
the effective departure from the adiabatic condition, and in a thermostat § measures the
departure of the mean bath temperature from its datum value. In practice only in the case
of the half-cycle periods is direct comparison between prediction and observation possible.

The analysis developed in §§4 and 5 establishes that for given values of (a'+4"), ¢ and 7
the period (¢, +1,) of a two-valued response regulator is strongly dependent upon the coeffi-
cient 4. Thus comparison of the predicted and observed half-cycle periods in a particular
apparatus, both when the coefficient 4 is made small (say, less than 0-1s~!) and when it is
made large (say, greater than 0-3s7!) should give some indication of the applicability of
equation (2-3) to that apparatus. The discussion of the linear response regulator in § 2, on
the other hand, suggests that when the controlling temperature 77 is a periodic function of
time the period is not very sensitive to the nature of the conduction process, and the same is
probably true of two-valued response regulators. Thus it is necessary also to compare
predicted and observed values of the mean signal S, but this can only be done indirectly,
in terms of the time integral of the signal during a particular experiment.

At the time of writing it has not been possible to study an apparatus to which the steady-
state approximation (see§ 2 (¢)) might be expected to apply. Some information is available,
however, concerning the behaviour of an externally compensated adiabatic calorimeter
whose design follows the scheme of figure 4. A general study has been made also of a simple
water-bath thermostat, using signal sources having different values for the coefficient 5.

(a) The externally compensated adiabatic calorimeter

Two sets of observations made with this apparatus are relevant to this discussion. The
first is a series of measurements of the half-cycle periods occurring with various values of
the conduction coeflicient b, the backlash ¢ and the total time delay 7. The second is asingle
measurement of the total heat capacity of a water-filled calorimeter vessel, in which the
magnitude of the total time integral of the mean signal was made about ten times greater
than is usual. In order to relate these observations to the predictions of the theory it is
necessary to describe briefly the mode of operation of the apparatus.

The calorimeter environment (see figure 4) is filled with water and its temperature is
altered by adding either hotter or colder water to it. The signal source is a multi-junction
thermocouple having one set of junctions cemented to the inner surface of the jacket vessel
and the other set in contact with the outer surface of the calorimeter vessel. The thermo-
couple e.m.f. is amplified by a galvanometer and photocell arrangement using two photo-
cells in a bridge network. The output e.m.f. of the photocell bridge is characterized as
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positive or negative according to whether the galvanometer image falls on the one or the
other of the photocells. The photocell bridge e.m.f., after further amplification, operates
a mechanical selector valve which admits to the calorimeter environment a uniform flow
of water from either of two sources. The temperatures of these sources are, respectively,
higher and lower than the mean temperature of the calorimeter environment so that the
latter is, at a particular time, either being heated or being cooled, according to the position
of the selector valve. The temperature difference between the ‘hot’ and ‘cold’ water
sources, and the flow rate from either, are fixed so that the sum (a’+4") of the heating and
cooling rates of the calorimeter environment remains constant at 0-0057 4-0-0002 degs~!.
The conduction coefficient 4 of the wall of the jacket vessel used in these experiments varied
between 0-058 4= 0-001 and 0-061 4-0-001s~!, according to the rate of stirring in the calori-
meter environment. The backlash ¢ of the regulator depends upon the nature of the thermo-
couple used as signal source, but for a particular thermocouple ¢ may be varied by altering
either or both of the resistance in series with the galvanometer and the controlling magnetic
field in the galvanometer itself. The operation of the selector valve is subject to a total time
delay 7 made up of two contributions, one arising in the galvanometer and the other arising
in the valve itself. This second contribution is always about 1-5s, but the galvanometer time
delay, like the backlash ¢, depends on the galvanometer sensitivity and the thermocouple
series resistance. Consequently the total time delay 7 is related to the backlash ¢; in general
7 is large when ¢ is small and vice versa (see table 6).

The measurements of half-cycle periods were carried out with the calorimeter operating
at about 35 °C. As soon as uniform operation was established (with the temperature of the
calorimeter vessel remaining constant) the periods of selected sequences of 10 or 12 half
cycles were observed. This was repeated with each of the three settings of the thermocouple
series resistance, both at maximum and at minimum galvanometer sensitivity. Maximum
stirring of the calorimeter environment was used during the observations at minimum
sensitivity and minimum stirring was used during the observations at maximum sensitivity.
The average values of the positive and negative half-cycle periods corresponding to each
setting are listed in table 6 under ¢, (obs.) and ¢, (obs.), respectively. None of the recorded.
individual half-cycle periods differs from the average value quoted in table 6 by more than
0-5s and the experimental uncertainty is probably less than 0-2s. The three left-hand
columns in table 6 give the values of b, ¢ and 7 corresponding to the various settings of the
thermocouple series resistance and the galvanometer sensitivity. The fourth column gives
values of 5 calculated from the ratio £, (obs.)/t, (obs.), and rounded off to the nearest 0-01.
The quoted values of 7 have been used, together with the quoted values of 4, ¢ and 7 (taking
a’'+a" as 0-0057 deg s~1) to solve equation (5-15) for u. The values of x thus obtained have been
used to calculated the values of the half-cycle periods, according to the relations

ty = plb, by = nulb,

which may be derived from the definitions (4:18) and (4-19). These calculated values of
the half-cycle periods are listed in table 6 under the headings #, (calc.) and ¢, (calc.), respec-
tively. The uncertainty in the quoted values of ¢, (calc.) and ¢, (calc.) is about 0-3s, arising
mainly from the uncertainty in the quoted values of 7. The errors in #, (calc.) and /, (calc.)
should of course be the same for all results pertaining to a particular galvanometer setting.
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Also included in table 6 (bottom line) is a set of observations corresponding to a much
larger value of 4. In this case the galvanometer circuit was connected to a special thermo-
couple having one set of junctions immersed in the calorimeter environment and the other
set in the thermostat bath in which the whole calorimeter assembly is immersed. Since the
thermocouple junctions have a high ratio of surface area to mass, the apparent conduction
coeflicient b is relatively large. The situation when the temperature of the calorimeter
environment is controlled by this thermocouple is then similar to that which would obtain
if the walls of the jacket vessel were very thin and the apparatus was operated in the normal
way.

TABLE 6. COMPARISON OF PREDICTED AND OBSERVED HALF-CYCLE PERIODS

b 2¢ T 7 ¢, (calc.) t, (calc.) t, (obs.) t, (obs.)
(s) (deg) (s) 0 ) o) )

0-061 0-00130 49 1-02 31-8 324 31-7 32-3
0-061 0-00494 24 1075 26-2 28-2 26-4 284
0-061 0-00494 2.4 1-20 25-2 30-2 253 30-3
0-061 0-0117 19 1-00 311 311 31:0 31-0
0-058 0-00047 21-5 1-00 (17 (77) (75) (75)
0-058 0-00179 67 1-50 31:9 47-8 32-0 475
0-058 0-00424 41 1-00 33-0 330 32-9 33-0
0-058 0-00424 41 1-20 30-1 361 30-0 36-0
0-058 0-00424 41 1-80 24-8 447 25-0 445
0-058 0-00424 41 4-00 17-6 70-4 18:0 70-0
0-31 0-0044 24 1-50 102 153 10-2 15:2

The situation described by the fifth line in table 6 is another special case, because of the
very large value of 7. In fact the movement of the galvanometer image is describable by a
relation formally similar to equation (2-3). When the response coefficient of the galvano-
meter is much greater than the coefficient 4, the galvanometer may be assumed to introduce
a time delay equal to the reciprocal of the response coefficient; but in the case cited the
galvanometer response coefficient is 0-05s71, rather less than b, so the assumption fails.
It is easily established in terms of equation (5-13), however, that when x is larger than
about 3

ﬂ#l—;—l—(l—{—g—{—[ﬂ).

With 5 = 1 this relation gives £, (calc.) as 77s. The half-cycle period observed under these
conditions is slightly smaller, as might be expected.

Apart from this case, the correspondence between the predicted and observed half-cycle
periods set out in table 6 shows that the amplitude (6, 4-6,) of the controlling temperature
is correctly predicted by the theory when applied to this type of calorimeter.

A particular calorimetric measurement of the total heat capacity of a calorimeter vessel
and its contents may be used in the following way to determine the accuracy with which
the theory enables the time integral of the mean signal to be calculated. When the heat
capacity of the calorimeter vessel and its contents is already known it is possible to use the
heat input and the temperature change observed in the particular experiment to calculate
the heat lost or gained by the calorimeter vessel in the course of that experiment. Dividing
this heat loss or gain by the thermal transfer coeflicient of the calorimeter vessel under the
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conditions of the experiment then gives the actual value of the time integral of the signal
during the experiment. This may then be compared with the calculated value of the time
integral of the mean signal. In order to compare the value of the time integral of the mean
signal calculated from the observed values of the ratio 7 of negative to positive half-cycle
periods with the actual value of the time integral of the signal it is obviously necessary to
be able to estimate the actual value with reasonable accuracy. This can only be done when
the magnitude of the time integral of the signal is large, so that the corresponding correction
term to the observed heat change is much greater than the experimental uncertainty
arising in measurements of temperature and energy input.

Results are available for only one experiment which meets the foregoing requirement.
Testing the theory was not, however, the original objective of this experiment and it is
for the present purpose unfortunate that a large part of the total time integral of the signal
arose during a period of manual control of the temperature of the calorimeter environment
subsequent to the completion of the heating process but prior to the final temperature
measurement. The experiment does, nonetheless, allow definite conclusions to be arrived
at concerning the applicability of the theory of this apparatus.

The experiment consisted in measuring the total heat capacity of a calorimeter vessel
completely filled with water (36-218g) under about 2 atm pressure over the temperature
range 29-9 to 30-3 °C. The regulator was operated with the galvanometer at maximum
sensitivity but with a large thermocouple series resistance (2¢ = 0-00424deg, 7= 4-1s,
see table 6). While the regulator was operating the periods of four successive half cycles
were recorded every 5 min; these figures were later used to calculate average values of 7.
The calorimeter vessel was heated very slowly over a period of 2756-1s. During the first
part of this period 7 decreased from about 0-5 just after heating commenced to about 0-25
after 20 min and thereafter increased slowly to just over 1-0 at the end of the heating period,
remaining near this value until the regulator was stopped 14 h after heating commenced.
(The theoretical values of S corresponding to 7 = 0-5 and to 7 = 0-25 are —0-0079 deg and
—0-0143 deg respectively). Graphical integration of a plot of S, calculated from the suc-
cessive observed values of 7, against time gives the time integral of the mean signal over
the period subsequent to the initial temperature measurement during which the regulator
was operating as —18:34-0-1degs, the quoted uncertainty being that which arises in the
graphical integration. After the regulator was stopped the temperature of the calorimeter
environment was controlled manually for about 10min before the final temperature
measurement was made. The time integral of the signal during this period is estimated from
a plot of galvanometer deflexion against time as —28+4-2degs. The total energy input to
the calorimeter vessel was 97-34J and the observed increase in the temperature of the
calorimeter vessel was 0-42594-0-0002 deg. The thermal transfer coefficient for exchanges
between the calorimeter vessel and the jacket vessel may be taken as 0:062+0-003 Js~!deg~!
during the automatic control period and as 0-0884-0:004 Js~!deg™! during the manual
control period. (The difference arises because during the manual control period the
thermocouple series resistance was reduced, thereby increasing the heat transported by the
thermocouple current.) Multiplying the two time integrals of the signal each by the appro-
priate transfer coeflicient gives the two contributions to the total heat loss from the calori-
meter vessel (heat is lost from the calorimeter vessel when the signal is negative; see § 1)

55 Vor. 253. A.
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as 1-13J and 2-4;J, the combined uncertainty being about 0-25 J. The measured total heat

capacity of the calorimeter vessel and its contents is then given by

97-34 —3-60 ) 1
W‘- = 220 1 :l:O GJ deg .

The accepted heat capacity of 36-218¢g of water at 30°C is 151-3 Jdeg™! (see Kaye &
Laby 1952), while the measured heat capacity of the empty calorimeter vessel in this
temperature range is 68-8--0-2 J deg~!, so that the actual value of the total heat capacity
of the calorimeter vessel and the water is 220-1-+0-2 J deg~!. The agreement between this
and the measured value is probably fortuitous in view of the large uncertainties. Never-
theless, it seems reasonable to argue that since the measured and actual heat capacities are
the same the calculated time integral of the signal during the automatic control period is
unlikely to be in error by an amount significantly greater than the quoted uncertainty in
the observed time integral of the signal during the manual control period. The corre-
sponding systematic error in the calculated values of S would be about 10 %,. It is therefore
to be concluded from this experiment that it is improbable that the values of the mean
signal calculated according to the present theory differ from the actual values by more
than 10 9.

(b) The water-bath thermostat

In this thermostat the signal source is essentially a toluene thermometer. The toluene
container is connected to one arm of a glass U-tube, the open end of which terminates in
a section of 1 mm bore capillary. The U-tube is filled with mercury so that expansion or
contraction of the toluene moves the mercury surface up or down in the capillary. A metal
probe projecting into the capillary is connected to the grid control circuit of a heavy duty
pentode in such a way that no current flows in the anode circuit of the pentode when the
probe is in contact with the mercury. The anode circuit of the pentode includes a relay
which energizes the thermostat regulating heaters whenever the pentode is conducting.
Thus the regulating heaters are switched on whenever the mercury surface in the capillary
arm of the toluene thermometer breaks away from the probe, and switched off whenever
the mercury surface makes contact with the probe. The backlash in this regulator arises
mainly in the signal source itself, and depends on the shape of the probe end and on the
surface tension of the mercury. Two different relays have been used, an electromagnetic
relay having negligible time delay, and a hot-wire relay which was adjusted to operate
with a time delay close to 2s. In order to study the behaviour of the regulator with different
values of the conduction coeflicient 4 of the signal source two different toluene containers
were made. The first is a glass cylinder about 1in. external diameter, containing about
150 ml. of toluene, while the second is a coil of } in. copper tubing containing about 60 ml.
of toluene. The second container has a much higher ratio of surface area to total heat
capacity than the first, and thus a larger conduction coefficient. With the first toluene
container the properties of the signal source are b = 0-031s7!, 2¢ = 0-0004 deg, and with
the second toluene container, b = 0-10s™! and 2¢ = 0-001 deg. The sum (a’-+4a") of the
heating and cooling rates of the thermostat bath may be taken as 0-00133 degs~!.

The half-cycle periods of the regulator when uniform operation obtains have been
observed at various values of 7 between 1 and 4 with each of the four possible combinations
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of signal source and relay. In every case the discrepancy between the predicted and
observed values of the half-cycle periods is less than the uncertainty in the predicted
values, and is, for each combination, independent of . The two extreme cases, the copper
coil toluene container with the electromagnetic relay, and the glass tube toluene container
with the hot-wire relay, are of special interest, since the second arrangement has been
commonly used in laboratory thermostats, while the first arrangement shows the extent
to which performance may be improved by simple modification. In the first case the value
of Q= 2bp/(a’+a") is 0-0752 and interpolation from table 7 gives x# = 1-28 when 7 = 1,
whence the half-cycle period is 12-8s (the observed mean value is 12:6 4-0-2s). Interpola-
tion from table 8 gives the mean signal when 5 = 1-5 as +3-0 x 10~*deg; that is to say,
when the duration of the heating period is two-thirds that of the cooling period the mean
temperature of the bath is 0-0003 deg above the datum temperature for which the signal
source probe is set. In the second case = 0-0093, b7 = 0-062 and the value of the half-
cycle period when 5 = 1 calculated according to equation (5-13) is 31-8s (the observed
mean value is 32+ 0-5s). The mean signal when 7 = 1-5, calculated according to equation
(5-24), is 6:6 x 10~*deg.

Thus, replacing the glass toluene container by the copper coil and eliminating the time
delay reduces the amplitude and period of the oscillation of the bath temperature about its
mean by a factor about 2-7. This implies, according to this theory, a significant reduction
in the time taken to re-establish uniform operation after a disturbance such as evolution or
absorption of heat by an agency immersed in the bath, and a reduction also in the departure
of the mean bath temperature from the datum value when 5 # 1 by a factor about 2.
It may be noted that a similar reduction in the magnitude of the mean signal is achieved
simply by eliminating the time delay when the glass container is used, but then the half-
cycle period when 7 = 1 is nearly 205, and the time taken to re-establish uniform operation
after a disturbance is longer than when the copper coil toluene container is used.

9. CONCLUSIONS

The conclusions reached by this investigation fall into two categories. One of these relates
to the general question of the adequacy of the approximate description of the thermal
conduction processes between the controlling and controlled surfaces. The other category
comprises the detailed conclusions concerning the behaviour of two-valued response thermo-
regulators to which the initial approximation is applicable. Since some of the detailed
conclusions are pertinent to the general question we shall begin by summarizing the
former.

Stability

The least surprising conclusion of the detailed analyses is that the operation of these
two-valued response thermoregulators is always stable, irrespective of the existence of
time delay in the servomechanism or the use of an auxiliary signal source. In fact this
statement remains true even when the thermal conduction processes between the con-
trolling and controlled surfaces do not follow equation (2-3). Thus, since the heating and
cooling rates at the controlling surface remain constant throughout each half cycle, if the
duration of any half cycle is extended far enough the temperature profile between the

55-2
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controlling surface and the controlled surface must approach a well defined steady-state
form depending on the magnitude of the heating or cooling rate, and the geometry of the
region between the two surfaces. Under these conditions the controlling and controlled
temperatures are necessarily related by an equation of the form (2-4). It follows that as
the half-cycle period is increased there is a finite limit to the lag of the controlled tem-
perature, so that the difference between the controlling and controlled temperatures during
the later part of any half cycle is constrained between limits similar to the limits (3-9) and
(3-10). Thus the operation of the regulator can never be unstable.

Uniform operation

Next, it has been shown that whenever the second time derivative of the datum tem-
perature 7] remains zero there exists a condition of uniform operation such that succeeding
cycles of the operation of the regulator are congruent. Every particular condition of
uniform operation is characterized by the parameters —¢, and + 0,, which are the values
at the terminations of the negative and positive half cycles, respectively, of the thermal
head H (the difference between the controlling temperature and the datum temperature).
These terminal values —6, and -0, are determined uniquely by the properties of the
regulator, including the positive-going and negative-going time rates of change &’ and a”
of the controlling temperature 73, together with the constant value p of the first time deri-
vative of the datum temperature 7. The analyses show also that the behaviour of a par-
ticular regulator when «’, ¢” and p remain constant approaches the condition of uniform
operation at a rate which depends on the properties of the regulator and on the rates a’, a”
and p. In every such case the magnitudes of the departures of successive terminal values
of H from —@, and + 0, decrease with increasing time and approach conformity to a geo-
metric progression of ratio less than unity. Numerical solution of the appropriate equations
in selected cases shows that the time taken to diminish by half a departure from uniform
operation is determined mainly by the conduction coefficient 4. The larger is the coefficient
b the more rapidly is the condition of uniform operation established.

Amplitude of the thermal head

A further conclusion concerning the terminal magnitudes of /7 when uniform operation
obtains is that their sum (6,4 0,) depends only on the net time rates of change of H, which
are (a'—p) during a positive half cycle and — (¢” +p) during a negative half cycle. That
is to say all sets of @', ¢” and p corresponding to specified (a'—p) and (a”-+p) give rise to
the same (0, +0,), although the separate values of ¢, and 6, differ from set toset. Since the
periods of positive and negative half cycles are given, respectively, by

_ 0 +0,
- a,—-ﬁ,

it follows that ¢, and £, are also determined unambiguously by (a'—p) and (a”-+p). Alter-
natively, the amplitude (¢, +0,) may be regarded as being determined by the sum (¢’ +a")
and the ratio  of negative to positive half-cycle periods, so that when (¢’ -+a”) is known the
theory enables unique values of the amplitude (¢, +-0,) and the half-cycle periods ¢, and ¢,

0,+0,
d”’{"ﬁ b

4

ty =
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to be calculated for every selected value of 7. This is of course the basis of the method
used to compute ¢ (calc.) and ¢, (calc.) in table 6.

Minimizing the amplitude of the thermal head

Numerical studies show that in any particular apparatus (¢, +0,) may be reduced by
increasing the conduction coefficient 4, and by decreasing either or both of (¢’ +4”) and the
servomechanism time delay 7. (In order to maximize 4 in the case of the calorimeter shown
in figure 4, the walls of the jacket vessel must be made as thin as possible and the outer
surface polished; rapid stirring in the calorimeter environment also helps.) When 7 is
small or zero, decreasing the backlash ¢ also decreases (0, +0,) significantly. Alternatively
the same result may be achieved by using a properly designed auxiliary signal source.
These studies show also that (6, +0,) always decreases as the ratio 5 departs from unity, so
that the whole-cycle period (¢,+1,) increases only slowly as 5 diverges from unity. Con-
sequently when 7 is much greater than unity the positive half-cycle period #, is much smaller
than when 7 is unity (see table 6).

The mean signal

The two most important conclusions concerning the mean signal S, which measures the
difference between the mean value of the controlled temperature and the datum tem-
perature, may be stated in the following way. First, the mean signal is always given by

S = §(0,—0,)—p/b,
irrespective of time delay in the servomechanism or the use of an auxiliary signal source.
That is to say, whenever the datum temperature 7, increases at rate p the mean value of
the controlled temperature 7, differs from the mean value of the controlling temperature
T, by —p/b. This is just the amount which, if 7; were increasing uniformly at rate p, would
be required to keep 7, also increasing uniformly at rate p. Secondly, as with the amplitude
(0,+0,), allsets of a’, " and p corresponding to specified (a’4-a”) and 7 give rise to the same
mean signal S. Thus a selected difference between the controlled and datum temperatures
may be achieved either by increasing the positive-going rate ¢’ and decreasing the negative-
going rate a”, or by decreasing the rate p by the same amount. In other words, if the sum
(@’ +a") remains constant the theory determines a unique mean signal S for every selected
value of the ratio 7 of negative to positive half-cycle periods. Since the half-cycle periods
can in practice be observed directly the mean signal can be evaluated as a function of time
throughout a calorimetric experiment irrespective of the detailed variation of a’, a” and p
during that experiment, provided only that the sum (a’+4”) remains constant. This is the
basis of the method used to evaluate the time integral of the signal in the calorimetric
experiment discussed in § 8. Only in the case where ¢’ and a” are equal can the total time
integral of the signal during a calorimetric experiment be related directly to the observed
change in the datum temperature. In all cases the total time integral of the signal is subject
to an uncertainty arising from periods of non-uniform operation. Provided that (d7}/d¢)
is always greater than about —4a” and less than about +-4a’, however, this uncertainty
is unlikely to exceed 4 or 5 times the magnitude of the time integral of the signal during a
single half cycle when 7 is unity; the uncertainty is less than this if a’, " and p change only
slowly during an experiment, so that departures from uniform operation are small.
553
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Computation of the mean signal

In order to be able to compute the total time integral of the signal it is necessary to
calculate the mean signal as a function of some observable aspect of the regulator behaviour.
Now if in a particular apparatus the sum (¢’ +4") remains constant the mean signal depends
only on the ratio 7 of negative to positive half-cycle periods. The condition that (a4 a")
remains constant is obviously fulfilled when both «¢" and ¢” remain constant; it is met also
in at least two other cases of practical interest. Thus, in one method of realizing the extern-
ally compensated adiabatic calorimeter shown schematically in figure 4 the servomechanism
adds either hot or cold liquid to the calorimeter environment. The heating and cooling
rates are then determined by the temperatures in the hot and cold sources and the relation
of these to the datum temperature; but if the temperature difference between the hot and
cold sources, and the flow rates of the hot and cold liquid, all remain constant then the sum
(a'-+a") will also remain constant irrespective of small changes in the datum temperature
(see §8). A similar argument applies to a liquid-bath thermostat, since the sum (a’+a") is
determined only by the thermal power of the controlling heaters and the total heat capacity
of the bath and is independent of variations in the rate of heat loss to the surroundings. The
time delay, if any, the backlash and the conduction coefficient will normally have well
defined values, so that the dimensionless parameters Q and 47 will have fixed values
characteristic of the apparatus.

Given Q and b7 equation (4:28), or (5-24) or (6-16), if appropriate, defines the mean
signal as a function of the ratio of negative and positive half-cycle periods when uniform
operations obtains. Consequently the mean signal may be tabulated for the range of 7
to be expected in normal operation. The class of two-valued response regulators with zero
time delay and no auxiliary signal source is of considerable practical importance, and in
this case the mean signal is determined by € and 7, together with the backlash .

Minimizing the magnitude of the mean signal
The most effective ways of minimizing the magnitude of the mean signal corresponding
to each value of # are making the coefficient 4 as large as possible and the time delay 7 as
small as possible. Increasing the sum (a’'+4") reduces the magnitude of the mean signal
corresponding to a given p, but at the cost of increasing the amplitude of the thermal head.
The use of a properly designed auxiliary signal source also reduces the magnitude of the
mean signal.

Time delay

The occurrence of time delay in the operation of the servomechanism always affects
adversely the performance of a two-valued response regulator.

Auxiliary signal source

The use of an auxiliary signal source always decreases the amplitude of the thermal head.
In order that the magnitude of the mean signal is also reduced it is necessary (i) that the
response coeflicient of the auxiliary signal source is much greater than the conduction
coefficient of the regulator, and (ii) that the limiting magnitude of the auxiliary signal is
not much greater than the regulator backlash. Further, it may be inferred that the use of
an auxiliary signal source does not effect any significant reduction in the time taken to
establish uniform operation after a disturbance.
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Adequacy of the approximation

Itis argued in § 2 that since the conduction process approaches the steady-state condition
towards the end of each half cycle it is to be expected that the theory should predict the half-
cycle periods with reasonable accuracy. In fact the data tabulated in appendix IT, together
with the calculations summarized in table 6, show that this argument fails in some cases.
Thus when the conduction coefficient and the backlash are both small and the time delay
is zero the magnitude of the difference between the controlling and controlled temperatures
at half-cycle termination with 7 = 1 may easily be less than halfthe magnitude corresponding
to steady-state conduction. This is true, for example, of the thermostat regulator discussed
in § 8 when the slow response signal source is used with the electromagnetic relay. Secondly,
even in cases which do not fulfil these conditions the situation at the end of the shorter half
cycle when # differs greatly from unity departs significantly from the steady state. This is
because when 7 is very different from unity the period of the shorter half cycle is much
smaller than when 7 is near unity. When the calorimeter regulator discussed in§ 8 is operated
with 4-1s time delay (see table 6), for example, the predicted difference between the
controlling and controlled temperatures at the end of a positive halfcycle when 7is 4 (p = 0)
is less than 55 9, of the difference corresponding to steady-state conduction. For the thermo-
stat regulator used with the low response signal source the analogous figure is 21 9.

The fact that the theory predicts correctly the half-cycle periods in these cases, together
with the inference from the calorimetric experiment that the mean signal is predicted at
least 90 %, correctly, strongly suggests that equation (2-3) gives an adequate description
of the thermal conduction processes in these two regulators.

It is therefore to be concluded that whenever the main thermal impedance between the
controlling and controlled surfaces is due to one or more liquid to solid boundaries, the
theory will give a description of the behaviour of a two-valued response regulator sufficiently
accurate for practical purposes. In particular this applies to the difference between the
mean value of the controlled temperature and the datum temperature which, especially
in a thermostat, is difficult to determine by direct measurement.

Because of the lack of suitable experimental data it is not possible to draw definite
conclusions concerning cases where the region between the controlling and controlled
surfaces is homogeneous as in the externally compensated adiabatic calorimeter shown
schematically in figure 3. Nevertheless, it seems that when this region is narrow and the
material has high thermal diffusivity, so that 2D//2 is larger than, say, 0-1s~!, the theory is
unlikely to be seriously inaccurate except, perhaps, when 7 is very different from unity.

General discussion

The foregoing conclusions suggest that the behaviour of simple two-valued response
regulators can be interpreted with sufficient accuracy to render advantageous the use of
this form of automatic regulation with a wide range of adiabatic calorimeters. Two-valued
response regulators are applicable in all cases where the time rate of change of the tem-
perature at the outer surface of the calorimeter vessel is small (not exceeding, say,
0-01 degs™!). This includes the measurement of heat capacities, especially of solids and
liquids, the measurement of heats of reaction of relatively slow reactions and of solution
and mixing processes, provided that these can be made to occur slowly (one might take
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10 and 200 min as rough limits for the duration of the test process). This type of regulation
may also be applied, for example, to bomb calorimetry, but this requires special measures
to slow down the rate of temperature change at the outer surface of the bomb and to ensure
a reasonable degree of temperature uniformity.
The main design requirements for a calorimeter with which a two-valued response
regulator is to be used are:
(1) the apparent conduction coefficient between the controlling and controlled surfaces
should be made as large as possible;
(ii) the backlash of the regulator should be minimized by using the greatest sensitivity
of the signal source consistent with
(iii) minimizing the heat transfer between the datum and controlled surfaces;
(iv) time delay in the operation of the servomechanism should be kept as small as
possible ;
(v) if an auxiliary signal source is used to offset the effects of large backlash, it should
conform to the design specifications set out at the end of § 6 above;
(vi) the sum of the heating and cooling rates at the controlling surface should be about
three times as great as the greatest expected heating or cooling rate at the surface of the test
calorimeter vessel.

I wish to record my gratitude to Dr C. R. Burch, F.R.S., for his help with the first two
sections of this paper, to Dr J. A. Barker who suggested the method used to solve the uniform
operation equations, and to my colleagues who have read and criticized the manuscript.

APPENDIX I. THE UNCERTAINTY IN THE TOTAL TIME INTEGRAL OF THE SIGNAL

We shall consider only the simplest case: that of a two-valued response regulator with
equal heating and cooling rates applied to an externally compensated adiabatic calori-
meter. The analysis developed in § 3 can be applied only when the first time derivative of
the temperature 7] at the surface of the calorimeter vessel is constant. Consequently, it is
necessary to approximate the actual time variation of 7] by a series of linear relations,
(d7}/dt) being assumed to change from one constant value to the next in a period short in
comparison with the half-cycle period of the regulator. In practice the largest change in
(d7}/dt) is probably that associated with the initiation of a change in 7}, i.e. the change of
(d7}/d¢) from zero to p.

If (d77/d¢) is initially zero, increases rapidly to p and then remains constant, a time ¢ = ¢,
during the half cycle in which (d7}/d¢) changes may be defined, by extrapolation from the
linearly increasing part of 7] = 7;(¢) back to the initial constant value, such that if (d7;/d¢)
changed instantaneously from zero to p at ¢ = ¢, the subsequent behaviour of the regulator
would be the same as that when (d7}/d¢) changes smoothly from zero to p. A detailed
study of the situation necessarily involves solving either equation (3-4) or equation (3-6)
for an incomplete half cycle and then solving the corresponding equation for the situation
(d7;/d#) = p. Consequently a general treatment of even this special mode of variation of
7T, is not possible; but it is obvious that if the time at which 7] effectively starts to increase
coincides with the end of a negative half cycle, then the corresponding terminal value of
His —0. This is necessarily less than —@,, the value when uniform operation obtains, and
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it follows also that the next terminal value of H is greater than +6,. If 7] starts to increase
at the end of a positive half cycle the first terminal value of His 40, which is less than +6,,
the value corresponding to uniform operation. These are the extreme cases, and there is
one point during each half cycle such that if the effective start of the increase in 7] coincides
with this point the condition of uniform operation will obtain immediately. Now when
the initial value of H is less than —§,, the minimum value of § during the first (positive)
half cycle after (d7}/d¢) attains the value p is less than the value according to equation (3-39)
and the maximum value of S during the following (negative) half cycle is greater than the
value given by equation (3-41), but the relation (3-37) ensures that the time integral of §
over the complete cycle shows a negative departure from the corresponding integral of
equation (3-48). The converse applies when the initial value of H is less than +6, and the
time integral of § over the first complete cycle shows a positive deviation from the corre-
sponding integral of equation (3-48).

These departures may be evaluated approximately in the extreme cases, giving a measure
of the uncertainty in the total time integral of § when the phase of the regulator cycle at
which 77 effectively starts to change is randomly selected. When Q is greater than about
0-02 the departure from uniform operation, due to the change in (d7}/d¢), is diminished
by a factor greater than 2 during the first complete cycle subsequent to the change, and
numerical investigation of representative cases shows that when 77 starts to increase at the
beginning of a positive half cycle, the difference between the time integral of S, over the
first positive half cycle and the value of the integral (3-42), is close to the difference {
between the actual time integral of § over the first five cycles after 7 starts to increase and the
corresponding time integral of equation (3-48). In fact the difference between the integral
of equation (3-38) between H; = —0, S = —¢ and H, = 40, and the integral (3-42) gives
a satisfactory approximation to { (min.). This integral of equation (3:38) is

=03 1 010
f Sdt = [%+ﬁ~—¢:] R e [%—%(32 _a)] . (I1)

Hy=—0

The other extreme case, when 7] starts to increase at the beginning of a negative half cycle,
is not susceptible to this approximation since the greater part of {(max.) is inevitably
associated with the second (positive) half cycle. The magnitude of {(max.), however, is
always much smaller than that of { (min.). The departure of the time integral of S from zero
during the period after 7] again becomes constant has a maximum value, {’ (max.), when
T, becomes constant at the end of a positive half cycle and a minimum which may be
negative when 77 becomes constant at the end of a negative half cycle. This departure
{’ (max.) is well approximated by the difference between the time integral of equation (3-4)
between H, = +0,, S = -+¢ and H; = —0, and the integral (3-47). This time integral of
equation (3-4) is

H3=—0
f Sdt — _1[§+g2“¢] [1*e“b«awz)/a]+5_+§_2[§+%((92_0):|. (12)
Hy—+0s bLb a Lb
Comparison of equations (I1) and (I2) shows that in general the magnitude of {’ (max.)
is smaller than that of { (min.). As with {(max.), {’ (min.) can only be found by numerical
calculation in particular cases, butits magnitude appears to be smaller than that of {’ (max.).
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Then, for a given increase in 7] for which the initiation and termination can be described
as above, the time integral of § over the complete process, computed according to equation
(3-48), is subject to an uncertainty extending over the range

[{ (max.)+{ (max.)] to [{(min.)+{ (min.)].

Numerical calculations in selected cases indicate that while ¢’ (min.) can be neglected,
{’ (max.) is usually significant; but {’ (max.) 4-{ (max.) appears always to be smaller than
—{(min.), so that the total uncertainty is within the range 4-{(min.) as computed from
equations (3-48) and (I1).

It is apparent from equations (I1) and (I2) that although the total time integral of S
over the complete change in 7] is nearly independent of the rate p of the change in 77 (see
equation (3-48)), the uncertainty +{(min.) decreases as p approaches zero. When € is
less than about 0-02 a significant departure from uniform operation extends over several
cycles after a change in (d77/d¢#) and the approximations just described become less accurate;
but it seems unlikely that the total uncertainty in the time integral of S over the complete
change in 7] ever exceeds significantly the magnitude -+ ¢ (min.) as computed above.

AprpPENDIX II. NUMERICAL SOLUTIONS FOR THE CASE OF ZERO TIME DELAY

When there is no significant time delay in the action of the servomechanism the mean
signal is uniquely determined by the three parameters €2, ¢ and 5. It is consequently con-
venient to tabulate S/¢ as a function of  and 7.

In order to compare the predicted half-cycle periods with those observed, over a range
of 7, use may be made of the relations

ty = plb, ty = nqu/b, (IT1)

where x is determined by equation (4-22). The variation of # with Q and 7 is summarized
in table 7. Itis in practice unlikely that () will be outside the range 0-005 to 1-00, and the
range 0-25 to 4-0 of 7 should be adequate for most cases arising in the normal operation of
regulators of this type. When 7 lies between zero and unity the half-cycle periods are related
to the value of x corresponding to 1/5 by

ty = plnb, ty = pufb,

and consequently only values of 5 greater than unity are included in table 7. The variation
of the mean signal function S/¢ over the same ranges of Q and 7 is summarized in table 8.
In addition it is often useful, especially in dealing with thermostats, to know the amplitude
(6,+0,) of the controlling temperature, which is related to the parameter 4 by

‘91+‘92: 2nu
¢ Ql+1)

The variation of the amplitude function (6, +6,) /¢ is summarized in table 9. Since the rate
of change of the datum temperature in a thermostat is zero, the values of S and (0, +0,)
suffice to determine ¢, and 6, so that the rate of approach to the condition of uniform opera-
tion may be calculated for each value of 7.

(I 2)
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TABLE 7. VARIATION OF g WITH () AND 7
Y 1-00 1-25 1-:33 1-50 1-75 2-00 3-:00 4-00
Q

0-005 0-4972 0-4457 0-4322 0-4088 0-3810 0-3590 0-3020 0-2692
0-:010 0-6296 0-5643 0-5472 0-5178 0-4824 0-4547 0-3830 0-3417
0-015 0-7236 0-6487 0-6290 0-5952 0-5549 0-5228 0-4408 0-3936
0-020 0-7993 0-7164 0-6949 0-6576 0-6131 0-5779 0-4876 0-4357

0-03 0-9209 0-8260 0-8007 0-7580 0-7068 0-6664 0-5630 0-5039
0-05 1-1041 0-9900 0-9602 0-9097 0-8481 0-8000 0-6775 0-6080
4 0-10 1-4236 1.2772 1.2387 1-1732 10955 1-0343 0-8800 0-7940
T 0-20 1-8618 1-6709 1-6214 1-5368 1-4375 1-3590 1-1646 1.0592
-~ 0-30 2-2074 1-9762 1-9180 1-8192 1-7023 1-6122 1-3893 1-2699
> 0-40 2-4950 2-2405 2:1750 2-0640 1-9335 1-8329 1-5866 1-4566
§ e 0-50 27624 2-4810 2-4090 2-2870 2-1442 2-0345 1-7678 1-6284
—~ 0-60 3-0126 2-7065 2-6282 2-4960 2-3418 2-2237 1-9385 17907
® 25| 0-70 3:2510 2-9210 2-8371 2-6954 2-5304 2-4045 2-1018 1-9460
=7 — 0-80 3-4803 3-1282 3-0385 2-8876 2-7123 2-5790 2-2597 2-0961
= O 0-90 3-7040 3:3295 3-2344 3:0746 2-8893 2-7485 2-4132 2:2420
T O 1-00 3-9924 3-5265 2-4260 3:2577 3-:0625 2-9147 2-5634 2-3847
=w
S Z TABLE 8. VARIATION OF S/¢ WITH {2 AND 7
Eg V 1-00 1-25 1-33 1-50 1.75 2-00 3-:00 4-00
5% o
8 %) 0-005 0 0-896 1-152 1-624 2-240 2-776 4-395 5:556
= Z 0-010 0 0-704 0-910 1-:280 1-768 2-184 3:457 4-357
I§ 0-015 0 0-610 0-788 1-112 1-529 1-895 2-997 3773
Ll 0-:020 0 0-555 0-712 1-003 1.382 1-711 2-702 3:400
0-03 0 0-476 0-615 0-867 1-195 1-479 2-333 2-929
0-05 0 0-396 0-577 0-719 0-990 1-224 1-925 2-410
0-10 0 0-3025 0-3904 0-5503 0-7547 0-9340 1-4620 1-8177
0-20 0 0-2272 0-2923 0-4111 0-5633 0-6957 1-0780 1-3273
0:30 0 0-1882 0-2422 0-3403 0-4675 0-5745 0-8845 1-0829
0-40 0 0-1630 0-2098 0-2945 0-4037 0-4960 0-7591 0-9243
0-50 0 0-1448 0-1860 0-2612 0-3576 0-4388 0-6683 0-8104
0-60 0 0-1303 0-1678 0-2353 0-3217 0-3945 0-5984 0-7232
0-70 0 0-1189 0-1528 0-2142 0-2929 0-3586 0-5423 0-6536
0-80 0 0-1091 0-1404 0-1967 0-2688 0-3289 0-4958 0-5967
0-90 0 0-1009 0-1299 0-1819 0-2483 0-3038 0-4568 0-5488
1-00 0 0:0938 0-1208 0-1690 0-2308 0-2820 0-4235 0-5080
4
L <@ TABLE 9. VARIATION OF (0,+0,)/¢ wITH ) AND 7
j K 1-00 1:25 1-33 1-50 1.75 2-00 3-:00 4-00
= > Q |
O ~ 0-:005 99-44 99-04 98-79 98-11 96-98 95-73 90-62 86:16
e, F 0-010 62-96 62-70 62-54 62-14 61-40 60-63 57-45 54-67
" 5 0-015 48-24 48-05 47-93 47-62 47-08 46-47 44-08 41-99
0-020 39-97 39-80 39-71 39-46 39-02 3853 36-57 34-85
an @, 0-030 30-70 30-59 30-50 30-32 29-99 29-62 28-15 26-88
=w 0-05 22-08 22-00 21-95 21-82 21-59 21-33 20-33 19-46
- 0-10 14-24 14-19 14-16 14-08 13-93 13-79 13-20 12-70
5 Z 0-20 9-309 9-283 9-265 9-221 9-148 9:060 8-736 8-474
T 9 0-30 7-338 7-319 7-306 7-277 7-222 7-166 6-946 6-773
n_lc') . 0-40 6-238 6-224 6-214 6-192 6-152 6-110 5:950 5-826
8 <0 0-50 5-525 5:513 5:506 5-489 5:458 5-425 5-303 5:211
o) (2 0-60 5:0210 5:0120 5-0061 4-9920 4-9675 4-9416 4-8463 4-7753
= 0-70 4-6440 4-6365 4-6320 4-6207 4-6007 4-5800 4-5039 4-4480
L é 0-80 4-3504 4-3444 4-3408 4-3314 4-3150 4-2983 4-2369 4-1922
el 0-90 4-1156 4-1105 4-1073 4-0995 4-0859 4-0719 4-0220 3-9858

1-00 3:9224 3-9183 3:9154 3-9092 3-8977 3-8863 3-8451 3-8156
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When the heating and cooling rates of an adiabatic calorimeter remain equal throughout
an experiment the correction term to be added to the observed temperature change may
be computed by equation (3-49) and it is then necessary to evaluate the constant X in
equation (3-48). This may be done by plotting S against p/a. When &’ and a” are equal
the definition (4-19) of » leads directly to

=l __p
o (IT3)
Table 8 may then be used to relate S to 7 for the appropriate Q, and equation (11 3) enables
S to be related directly to p/a.

REFERENCES

Buzzell, A. & Sturtevant, J. M. 1951 J. Amer. Chem. Soc. 73, 2454.

Calvet, E. 1938 J. Chim. Phys. 35, 69.

Carslaw, H. S. & Jaeger, J. C. 1947 Conduction of heat in solids. Oxford: Clarendon Press.

Dole, M., Hettinger, W. P., Larson, N., Wethington, J. A. & Worthington, A. E. 1951 Rev. Sci.
Instrum. 22, 812,

Kay, J. M. 1957 Introduction to fluid mechanics and heat transfer. Cambridge University Press.

Kaye, G. W. C. & Laby, T. H. 1952 Physical and chemical constants. London: Longmans Green
and Co.

Turner, L. B. 1936 Proc. Camb. Phil. Soc. 32, 663.


http://rsta.royalsocietypublishing.org/

